Weed Management in Mississippi

Jason A. Bond

Delta Research and Extension Center

Stoneville, MS

Phone: (662) 769-0268

E-mail: jason.bond@msstate.edu

MISSISSIPPI STATE UNIVERSITY

DELTA RESEARCH AND EXTENSION CENTER

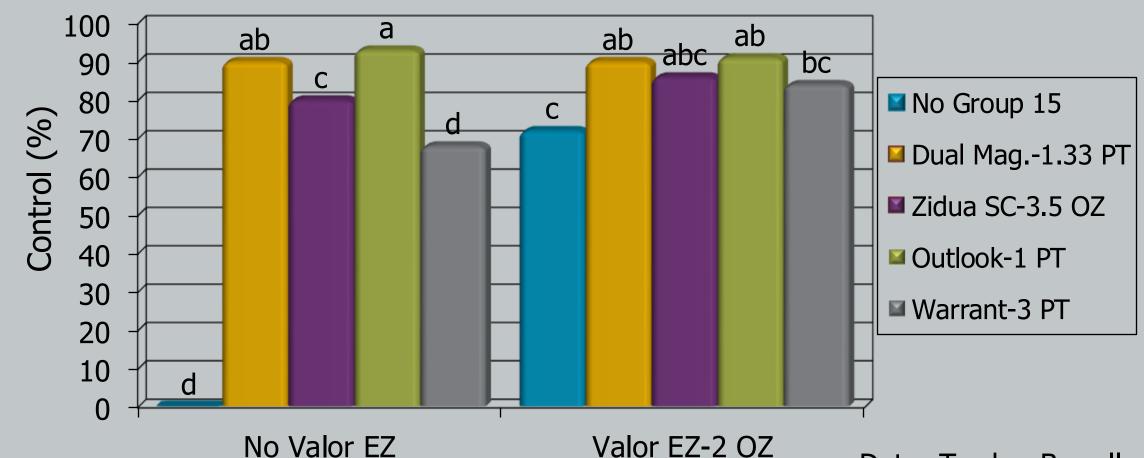
Acknowledgment

- ADAMA USA
- Albaugh LLC
- AMVAC
- BASF Corporation
- Bayer CropScience
- Corteva Agrisciences
- FMC Corporation
- Gowan Company
- Helm Agro

- Horizon Ag
- Nufarm
- Nutrien Ag Solutions
- RiceTec
- SePRO Corporation
- Summit Agro
- Syngenta Crop Protection
- Valent USA Corporation

2023 Weed Control Issues

- Italian ryegrass control
- "Non-traditional" weed species pre- and/or post-planting
- Poor grass control in all crops
- Weed management in furrowirrigated rice
- Off-target herbicide movement
- Tank contamination/misapplication



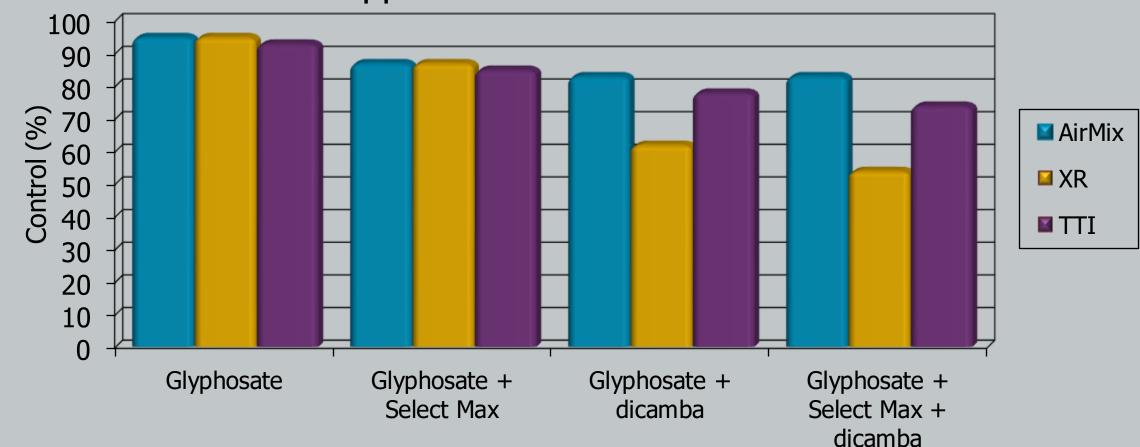
- Too large at time of herbicide application.
- Bad environment...wet, cold, cloudy, and/or frost damage.
- Target plants green but not actively growing.
- Negative interactions with herbicide mixtures.

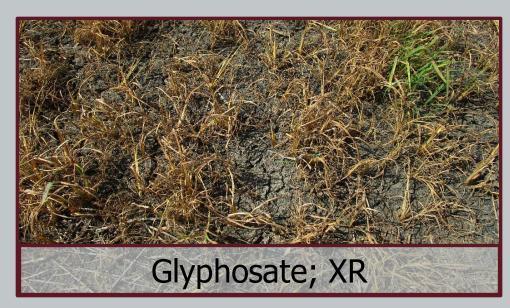
Italian ryegrass control 100 d after application of fallapplied residual herbicides in 2022 and 2023

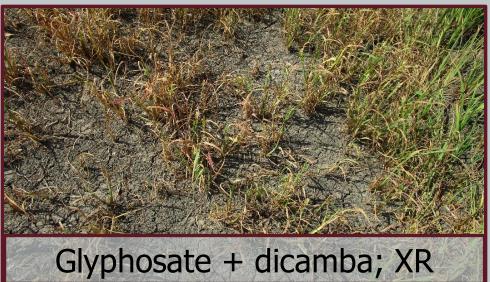
Data: Tayden Burrell

Italian ryegrass control 35 d after sequential herbicide treatments including residual herbicides in 2022 and 2023

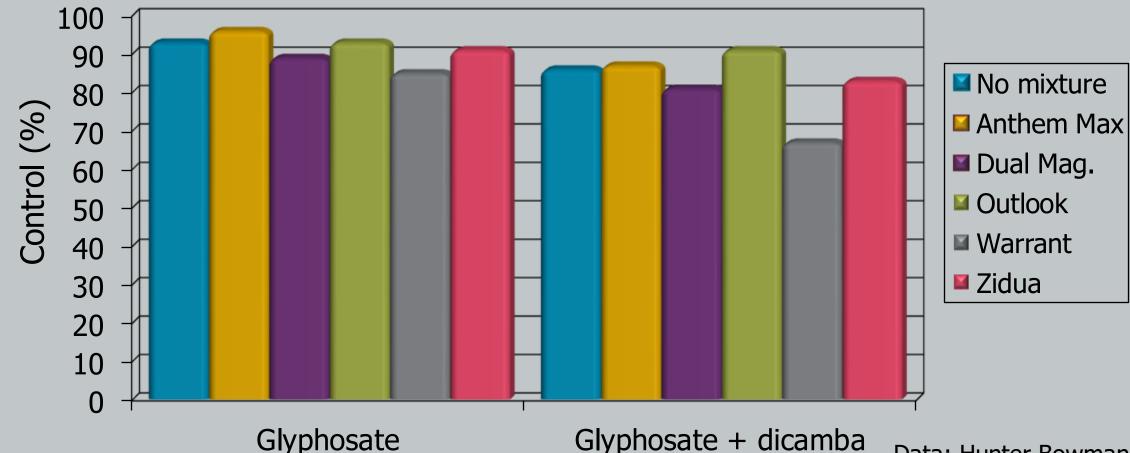
Data: Tayden Burrell






Barnyardgrass control 14 d after herbicide treatments applied with different nozzles

Data: Hunter Bowman

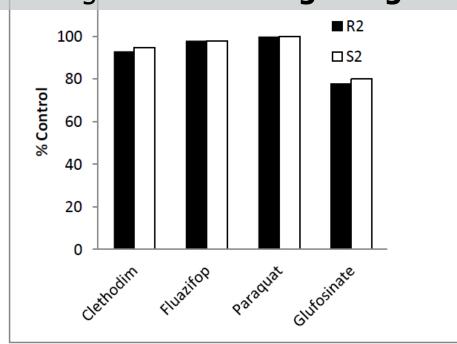


Barnyardgrass control 14 d after application of postemergence treatments mixed with residual herbicides

Glyphosate + dicamba

Data: Hunter Bowman

Goosegrass Control



- Glyphosate controlled goosegrass 96 to 100%. (Clewis et al. 2006; Thomas et al. 2006)
- Clethodim controlled goosegrass. (Burke et al. 2004; Vidrine et al. 1995)
- Goosegrass control 52% lower with glufosinate + clethodim compared with clethodim alone. (Burke et al. 2005)

Goosegrass Control

Timing: 2- to 3-inch goosegrass

Glyphosate-resistant goosegrass from Mississippi (Molin et al. 2013)

Table 7. Annual grass control 4 weeks after application of fluazifop and sethoxydim at five plant growth stages in the field.

Giant

	Growth stage	Herbicide	Rate	grass	crabgrass	foxtail
			(kg/ha)		(% control)	
	Preemergence	Sethoxydim	0.28	0	0	0
[: - d - DV -+	Ü	Fluazifop	0.07	0	0	0
Fusilade DX at			0.14	26	16	16
			0.28	38	28	24
16 FL OZ/A			0.56	79	76	53
10 1 L OZ/A			$SD(0.05) = 17^a$			
	Pretillering	Sethoxydim	0.28	93	95	99
		Fluazifop	0.07	85	84	79
		•	0.14	93	94	86
			0.28	100	100	99
			0.56	100	100	100
		LSD $(0.05) = 9^{2}$				9 ^a
1 tiller →	Early tillering	Sethoxydim	0.28	100	98	99
I dilci —		Fluazifop	0.07	84	55	58
/4 !l-\		•	0.14	100	95	77
(1 inch)			0.28	100	100	97
(=			0.56	100	100	98
				LSD $(0.05) = 11^{2}$		
3 tillers →	► Tillering	Sethoxydim	0.28	89	99	94
		Fluazifop	0.07	80	40	38
/ A !		•	0.14	99	65	65
(4 inches)			0.28	100	83	79
(0.56	100	91	90
				L	SD(0.05) = 1	18 ^a
5 tillers →	Late tillering	Sethoxydim	0.28	28	69	88
		Fluazifop	0.07	13	7	17
/o :		-	0.14	67	24	33
(9 inches)			0.28	80	43	89
(2 :::0::05)			0.56	97	58	79
				L	LSD $(0.05) = 18^{a}$	

Annual grass response to fluazifop (Derr et al. 1985)

Goosegrass Control

I was hoping to find something that's not there. The summary is:

- 1. Goosegrass is hard to kill when it's hot or dry.
- 2. A lot of crap antagonizes clethodim
- 3. Don't spray gooosegrass when it's got 20 tillers on it.

I could've told you all that when I started chasing that rabbit about 1:00

Mon, Oct 30 at 7:29 PM

Most of the complaints I worked this year ended up being drought or too big at app.

Efficacy:

- Efficacy is how well something works if done perfectly.
- Is this treatment capable of killing this target weed under specific or controlled conditions?

Effectiveness:

- Effectiveness is how well something works based on how it is used.
- Is this treatment capable of killing this target weed across geography under present conditions?

Complexity Theory

- Complex systems exhibit a hidden order in behavior.
- Theory was founded on attempts to rationalize behavior of large complex systems.
- A complex system has many independent agents interacting in multiple ways.

 Because a system depends on so many intricate interactions, the number of possible reactions to any given change is infinite.

Source: Battram 2002; Bogg and Geyer 2007

Weed factors:

- Life form
- Morphology
- Size
- Maturity
- Response to stress
- Crop growth rate
- Genetics

Environmental factors:

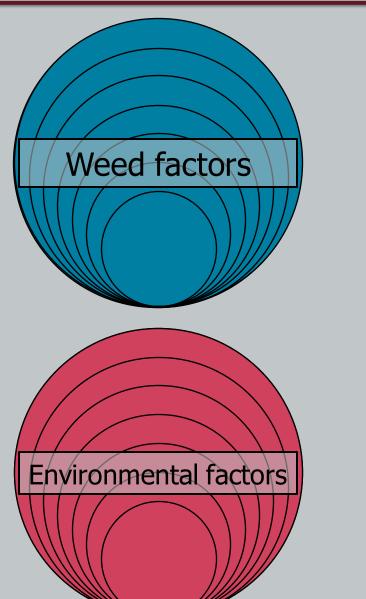
- Soil/soil moisture
- Temperature
- Wind
- Plant stress
- Rain-free period/rain chance
- Humidity
- Cloud cover

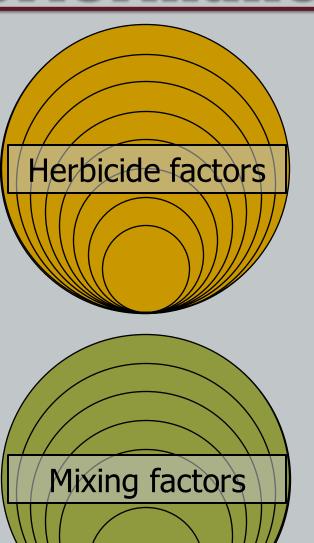
Herbicide factors:

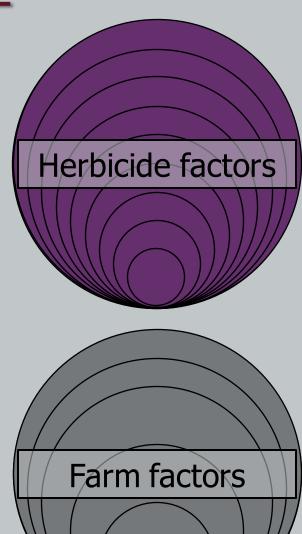
- Cost
- Application rate
- Application method
- Classification
- Selectivity
- Mode of action
- Formulation
- Compatibility

Mixing factors:

- Spray solution
- Mixing order
- Water quality (pH, cations)
- Adjuvants
- Water conditioners
- Drift reducing agents


Equipment factors:


- Calibration
- Pump
- Hoses
- Strainers
- Nozzles
- Speed
- Water volume
- Pressure
- Time of day


Farm factors:

- Equipment resources
- Labor resources
- Farm size
- Farm geography
- Financial status

Herbicide factors Optimum herbicide performance Weed factors Herbicide factors Farm factors **Environmental factors**

Mixing factors

Points to Consider

Italian ryegrass:

- Italian ryegrass management requires two herbicide applications.
- Outlook <u>may</u> add to herbicide choices for Italian ryegrass.
- Exercise caution with herbicide mixtures in early burndown.

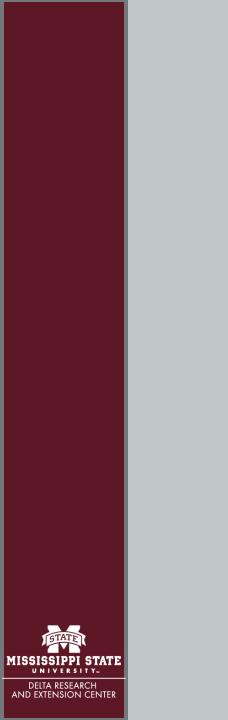
Summer annual grass:

- We do not have a grass control <u>problem</u>. We have a grass control <u>condition</u>.
- A <u>problem</u> has a solution. A <u>condition</u> must be managed.
- Grass size at application is absolutely critical to success.
- Exercise caution with herbicide mixtures, especially under stress.

Questions

Jason A. Bond

Delta Research and Extension Center


Stoneville, MS

Phone: (662) 769-0268

E-mail: jason.bond@msstate.edu

