Off-Target Movement of Auxin Herbicides

Kyle R. Russell
Graduate Student Assistant
With Dr. Peter Dotray

Potential Drift Scenario

Damage from Off-Target Movement

Objectives

Determine the effects that different rates and timings of dicamba and 2,4-D applications have on:
$>$ Boll number
$>$ Boll distribution
$>$ Yield
$>$ Fiber quality

Another Way of Thinking...

Rather than a simulated drift scenario, this would be similar to a tank contamination
Timings of these applications would then be when the grower is applying POST herbicides or residual herbicides

Gallons of Solution Left in a $\mathbf{1 0 0 0}$ Gallon Sprayer	
$1 X$	Intentional App.
$1 / 10 X$	100 Gallons of solution
$1 / 50 X$	20 Gallons of solution
$1 / 100 X$	10 Gallons of solution
$1 / 500 X$	2 Gallons of solution
$1 / 1000 X$	1 Gallon of solution

Determining Auxin Injury on Cotton

Determining Auxin Injury on Cotton

Determining Auxin Injury on Cotton

7 DAA (4 weeks after first bloom)

7 DAA (First Square +2 weeks)

Differences in Injury Symptoms

Both pictures taken 21 days after the application

Sprayed July $16^{\text {th }}$ (FS+2wks)

Sprayed July $22^{\text {nd }}(\mathrm{FB})$

Changes to Boll Distribution

Changes to Boll Distribution

Changes to Cotton Fiber Quality

Rate	Timing	$\begin{gathered} \text { Yield } \\ \left(\mathrm{kg} \mathrm{ha}^{-1}\right) \end{gathered}$	Micronaire	Length (mm)	Uniformity (\%)	Strength (g tex ${ }^{-1}$)	Elongation (\%)
Control	--	1603 AB	4.1 ABCD	31.0 A	81.3 AB	31.3 ABCD	6.2 AB
1/500X	FS+2wks	1632 A	3.9 BCDE	31.1 A	82.1 AB	33.5 A	6.2 AB
	FB	1497 AB	4.0 ABCDE	29.8 AB	81.8 AB	31.5 ABC	6.1 BC
	FB+2wks	1594 AB	4.0 BCDE	29.7 ABC	81.9 AB	32.3 ABC	6.1 BC
	FB+5wks	1188 CD	3.9 BCDE	28.9 BC	81.4 AB	33.1 AB	6.5 A
1/100X	FS+2wks	1512 AB	4.2 ABC	29.9 AB	80.6 AB	29.7 CD	6.2 AB
	FB	1609 AB	4.0 ABCD	30.1 AB	81.8 AB	31.6 ABC	6.1 AB
	FB+2wks	1542 AB	4.2 AB	30.0 AB	81.3 AB	31.7 ABC	6.2 AB
	FB+5wks	1628 AB	4.1 ABCD	29.6 ABC	82.2 A	32.5 ABC	6.3 AB
1/50X	FS+2wks	1593 AB	4.4 A	29.5 ABC	81.4 AB	30.1 BCD	6.0 BC
	FB	1645 A	4.0 BCDE	30.8 A	81.9 AB	32.2 ABC	6.2 AB
	FB+2wks	1486 ABC	4.1 ABCD	30.6 AB	81.4 AB	32.2 ABC	6.1 BC
	FB+5wks	1600 AB	4.2 AB	30.5 AB	82.5 A	31.1 ABCD	6.1 BC
1/10X	FS+2wks	1134 D	3.9 BCDE	29.3 ABC	82.2 AB	31.7 ABC	6.3 AB
	FB	1176 D	3.8 CDE	30.5 AB	81.3 AB	31.8 ABC	5.7 C
	FB+2wks	1321 BCD	4.2 AB	30.8 A	82.6 A	32.6 ABC	6.0 BC
	FB+5wks	1490 ABC	3.6 E	30.8 A	81.9 AB	32.0 ABC	6.3 AB
1X	FS+2wks ${ }^{+}$	22 F	---	---	---	---	---
	FB	147 F	3.9 BCDE	27.7 C	77.7 C	27.9 D	6.0 BC
	FB+2wks	605 E	4.0 ABCDE	28.8 BC	79.7 BC	29.7 CD	6.0 BC
	FB+5wks	1585 AB	3.7 DE	29.9 AB	81.1 AB	30.9 ABCD	6.1 BC

Thank You

Kyle R. Russell
Graduate Research Assistant

806-407-0488

\qquad sh

