
CURRENT PERFORMANCE OF VIP TRAITS IN COTTON

DAVID KERNS
DEPARTMENT OF ENTOMOLOGY
TEXAS A&M UNIVERSITY

PAST AND CURRENT BT COTTON TECHNOLOGIES

Company	1 st generation (single gene)	2 nd generation (dual gene)	3 rd generation (multi-gene)	3 rd generation (2017)
Bayer	Bollgard (Cry1Ac)	Bollgard 2 (Cry1Ac+Cry2Ab)		Bollgard 3 (Cry1Ac+Cry2Ab+Vip3A)
Corteva		WideStrike (Cry1Ac+Cry1F)	WideStrike 3 (Cry1Ac+Cry1F+Vip3A)	
BASF		TwinLink (Cry1Ab+Cry2Ae)		TwinLink Plus (Cry1Ab+Cry2Ae+Vip3A)
	Н	lomogeny across cro	ps	
Crop	Cry1A	Cry1F	Cry2	Vip3A
Cotton	Cry1Ac, Cry1Ab	Cry1F	Cry2Ab, Cry2Ae	Vip3A
0.0	Cry1Ab	Cry1F	Cry2Ab2	Vip3A
Corn	Cry1A.105 (Cry1A	b, Cry1Ac, Cry1F)		
Both crops	Cry1As, Cry1F, Cry2As and Vip3A			

SURVEY BIOASSAY PROCEDURE

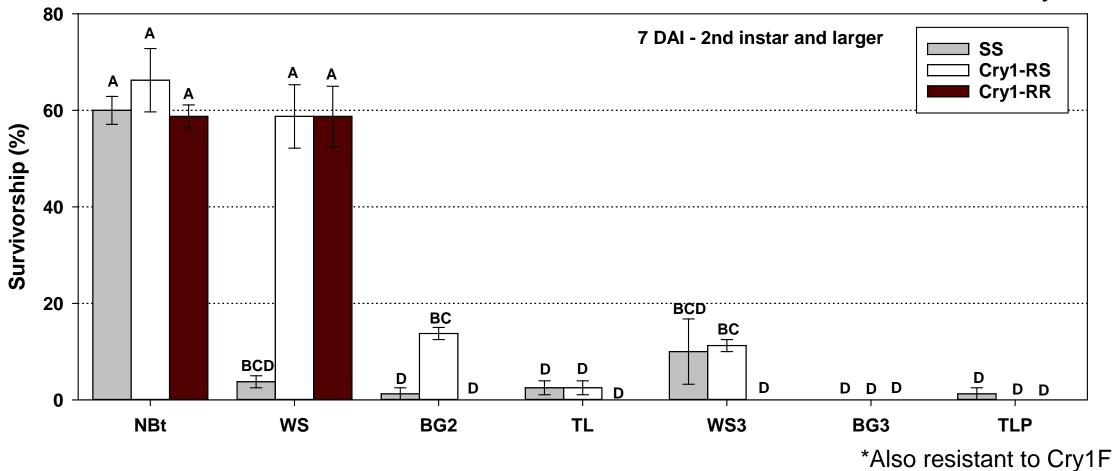
- Bollworms/corn earworm collected from the field as larvae
- Overnight delivery to lab in College Station
- Reared to F1 or F2 generation and then bioassays
- Tested for response to Cry1Ac, Cry2Ab2, Cry1F and Vip3A
- Diet overlay bioassays
 - Test 6-8 Bt concentrations and a control
 - Used 16-32 neonate larvae, replicated 4 times for each concentration; allowed to feed for 7 days
- Record number alive/dead, instar and weight of survivors
- Compare field populations to a standard laboratory strain (Benzon)
 - Dead = Actual dead larvae + 1st instar larvae
 - Dose response bioassay: Probit analysis for LC50 and their 95% CL.
 - Resistance ratio = LC50 of a field population / LC50 of the susceptible strain.

Insect strain	LC ₅₀ (μg/cm²)	Resistance ratio
CBW-BZ-SS-TAMU	0.11	1.0
CBW-TX-SS-TAMU	0.09	1.2
CBW-AR-LE-VT2P	>31.60	>316.00
CBW-AR-TR-VT2P	>31.60	>316.00
CBW-LA-AA-VT2P	8.97	81.55
CBW-LA-AA-BG2	>31.60	>316.00
CBW-TN-JN-VT2P	>31.60	>316.00
CBW-BZ-SS-USDA	0.18	1.0
CBW-PK-AR-NBt corn	>31.60	>316.00
CBW-HB-LA-CC	12.30	68.33

Cry1Ac Resistance Survey Results

- Arkansas
- Louisiana
- Tennessee

Insect strain	LC ₅₀ (μg/cm²)	Resistance ratio
CBW-BZ-SS-TAMU	0.11	1.0
CBW-TX-SS-TAMU	0.09	1.2
CBW-MS-SE-Leptra	2.37	21.55
CBW-MS-SE-VT2P	>31.60	>316.00
CBW-MS-SK-VT2P	>31.60	>316.00
CBW-BZ-SS-USDA	0.18	1.0
CBW-CA-MS-CC	>31.60	>175.56
CBW-CO-MS-CC	>31.60	>175.56
CBW-FA-MS-Bt corn	14.26	77.8
CBW-GD-MS-CC	>31.60	>175.56
CBW-MK-MS-CC	>31.60	>175.56
CBW-MB-MS-NBt corn	>31.60	>175.56
CBW-NZ-MS-CC	>31.60	>175.56
CBW-OB-MS-CC	>31.60	>175.56
CBW-RF-MS-Bt corn	>31.60	>175.56
CBW-SV-MS-NBt corn	>31.60	>175.56
CBW-WA-MS-CC	>31.60	>175.56
CBW-TL-MS-Bt cotton-F2	6.23	34.01


Cry1Ac Resistance Survey Results

Mississippi

Mid-South 100% with RRs > 10X

COTTON TECHNOLOGY EFFICACY TO CRY1Ac-SS, RS & RR GENOTYPES

Cotton Leaf Tissue Bioassays

Insect strain	LC ₅₀ (µg/cm²)	Resistance ratio
CBW-BZ-SS-TAMU	0.63	1.0
CBW-TX-SS-TAMU	0.70	1.1
CBW-AR-LE-VT2P	4.42	7.01
CBW-AR-TR-VT2P	8.06	12.79
CBW-LA-AA-VT2P	15.15	24.05
CBW-LA-AA-BG2	>20.00	>31.75
CBW-LA-WB-VT2P	1.62	2.57
CBW-TN-JN-VT2P	>20.00	>31.75
CBW-BZ-SS-USDA	0.98	1.0
CBW-PK-AR-NBt corn	3.16	3.16
CBW-HB-LA-CC	>10.00	>10.20

Cry2Ab2 Resistance Survey Results

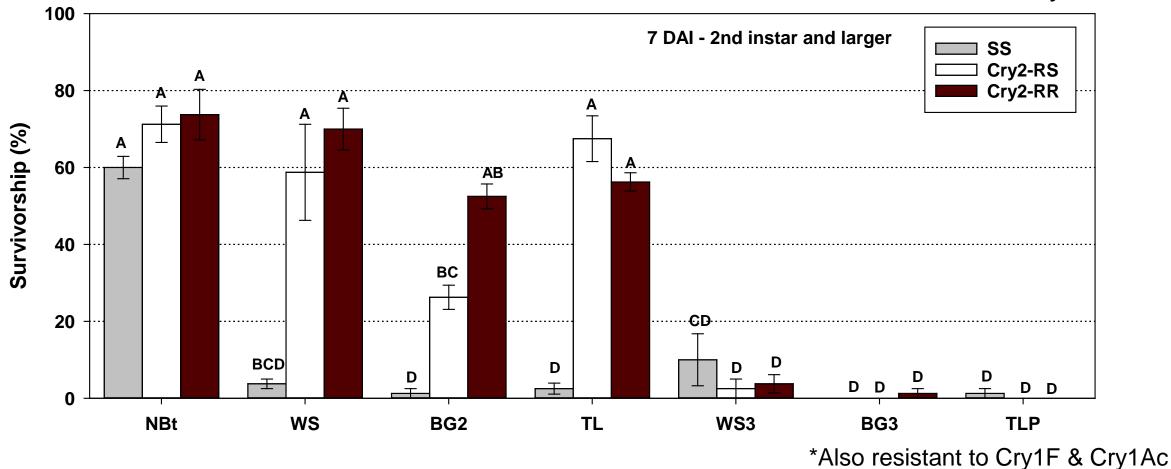
- Arkansas
- Louisiana
- Tennessee

		Resistance
Insect strain	LC ₅₀ (μg/cm²)	ratio
CBW-BZ-SS-TAMU	0.63	1.0
CBW-TX-SS-TAMU	0.70	1.1
CBW-MS-SE-Leptra	2.05	3.25
CBW-MS-SE-VT2P	>20.00	>31.75
CBW-MS-SK-VT2P	>20.00	>31.75
CBW-BZ-SS-USDA	0.98	1.0
CBW-CA-MS-CC	>10.0	>10.20
CBW-CO-MS-CC	>10.0	>10.20
CBW-FA-MS-Bt corn	>10.0	>10.20
CBW-GD-MS-CC	>10.0	>10.20
CBW-MK-MS-CC	>10.0	>10.20
CBW-MB-MS-NBt corn	>10.0	>10.20
CBW-NZ-MS-CC	>10.0	>10.20
CBW-OB-MS-CC	>10.0	>10.20
CBW-RF-MS-Bt corn	>10.0	>10.20
CBW-SV-MS-NBt corn	>10.0	>10.20
CBW-WA-MS-CC	>10.0	>10.20
CBW-TL-MS-Bt cotton-F2	1.86	1.88

Cry2Ab2 Resistance Survey Results

Mississippi

Mid-South 78.26% with RRs > 10X


CRY2Ab2 RESISTANCE INHERITANCE

Population	Genotyp e	N	LC ₅₀ (95% CI) (μg/cm²)	Slope ± SE	X 2	df	Resistance Ratio
CBW-TX-SS	SS	512	0.70 (0.51,0.67)	1.53 ± 0.15	40.2	26	
CBW-G13-Cry2Ab2- RR	RR	512	286.35 (65.44, 5243)	0.41± 0.07	32.6	26	409.1
F1a: RR♂*SS♀	RS	512	14.96 (6.06, 105.08)	1.26 ± 0.37	43.3	26	21.4
F1b: RR♀*SS♂	RS	512	15.73 (8.88, 37.33)	1.18 ± 0.20	33.7	26	22.5
Pooled F1	RS	102 4	15.37 (9.48, 30.19)	1.20 ± 0.18	79.6	54	22.0

- Cry2Ab2 RR resistance is very high
- Resistance is dominant (based on >10X resistance ratio of RS)
- However, this resistance is no complete and may be classified as partially recessive (because resistance ratio of RS is skewed towards susceptibility)
- Other backcrossing data suggest that there may be more than one gene involved and that the other gene(s) may be sexually linked

COTTON TECHNOLOGY EFFICACY TO CRY2A-SS, RS & RR GENOTYPES

Cotton Leaf Tissue Bioassays

Insect strain	LC ₅₀ (µg/cm²)	Resistance ratio-BZ	Resistance ratio-TX
CBW-BZ-SS-TAMU	0.69	1.0	4.05
CBW-TX-SS-TAMU	0.17	-0.25	1.0
CBW-AR-LE-VT2P	0.39	-1.80	4.06
CBW-AR-TR-VT2P	0.15	-4.60	-1.13
CBW-LA-AA-VT2P	0.23	-3.00	1.35
CBW-LA-AA-BG2	0.24	-2.88	1.41
CBW-LA-WB-VT2P	0.14	-4.93	-1.21
CBW-TN-JN-VT2P	0.32	-2.16	1.88
CBW-BZ-SS-USDA	0.39	1.0	
CBW-PK-AR-NBt corn	0.21	-1.86	

Vip3Aa39 Resistance Survey Results

- Arkansas
- Louisiana
- Tennessee

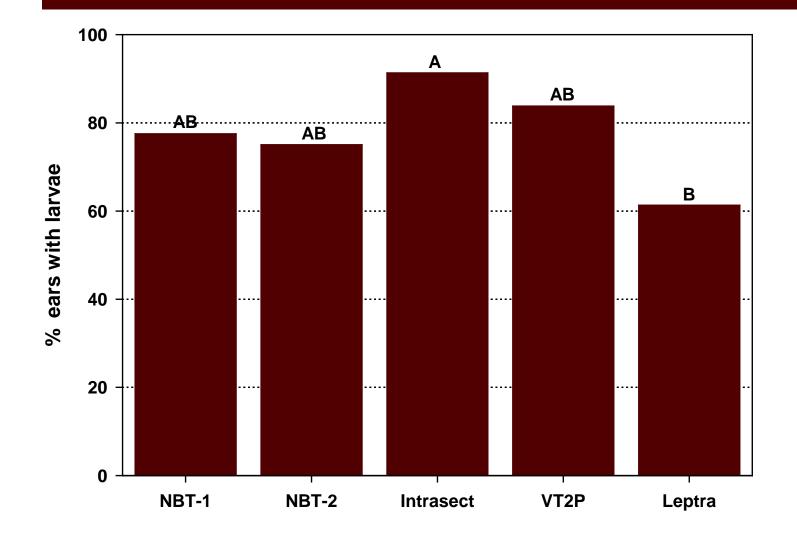
Insect strain	LC ₅₀ (μg/cm²)	Resistanc e ratio-BZ	Resistance ratio-TX
CBW-BZ-SS-TAMU	0.69	1.0	4.05
CBW-TX-SS-TAMU	0.17	-4.05	1.0
CBW-MS-SE-Leptra	2.21	3.20	13.00
CBW-MS-SE-VT2P	0.08	-8.63	-2.13
CBW-MS-SK-VT2P	0.16	-4.31	-1.06
CBW-BZ-SS-USDA	0.39	1.0	
CBW-FA-MS-Bt corn	0.22	-1.77	
CBW-GD-MS-CC	0.09	-4.33	
CBW-MB-MS-NBt corn	0.14	-2.79	
CBW-MK-MS-CC	0.16	-2.44	
CBW-OB-MS-CC	0.12	-3.25	
CBW-RF-MS-Bt corn	0.16	-2.44	
CBW-SV-MS-NBt corn	0.32	-1.22	
CBW-WA-MS-CC	0.15	-2.60	
CBW-TL-MS-Bt cotton-F2	0.04	-0.12	

Vip3Aa39 Resistance Survey Results

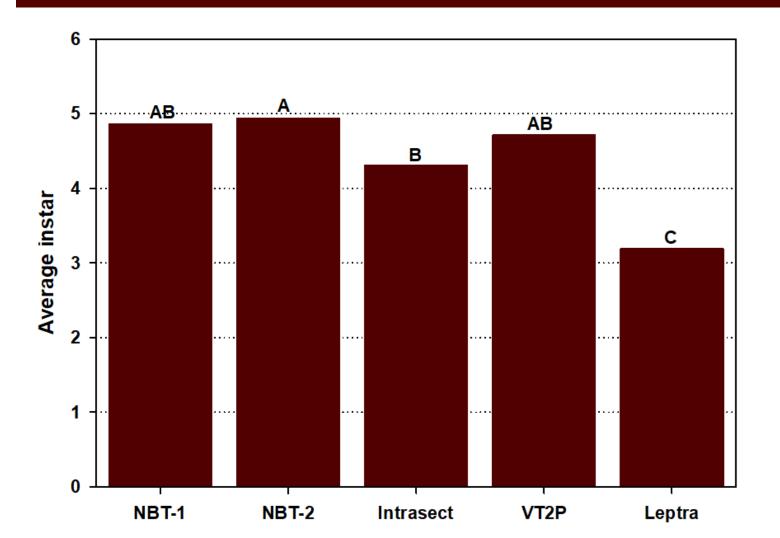
Mississippi

Mid-South 0.00% with RRs > 10X

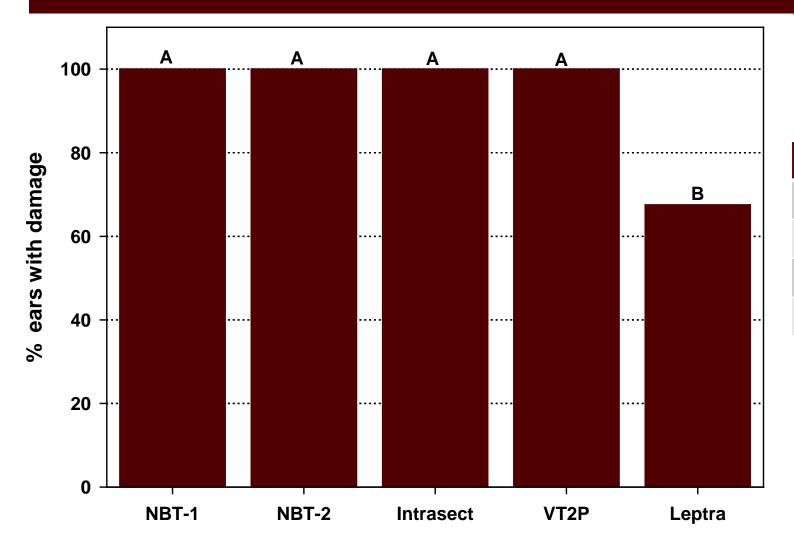
- Failures in Vip cotton are the exception, not the rule
- Most of the time occurs under very high pressure
 - Trap crop scenarios
- Bloom and bloom tags



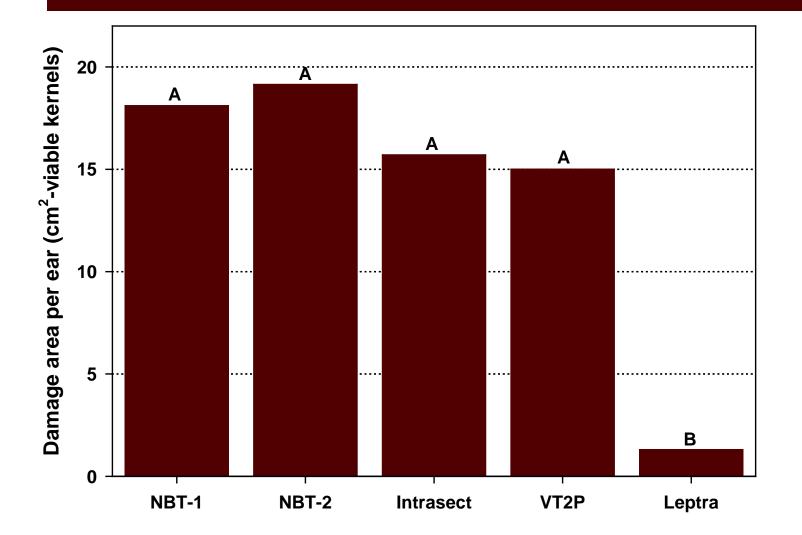
- Most common are incidences where there is unacceptable injury (20-30%) but very little worm survival
- The reason for survival to large worms is not known
- May result from low Bt expression, resistance or both


INCIDENCES OF BOLLWORM INJURY IN TRIPLE GENE COTTON RESISTANCE RATIOS: CRY2Ab2 = 3.46, VIP3Aa39 = 3.00

BT CORN TRAIT PERFORMANCE



Technology	Bt traits
NBT-1&2	None
Intrasect	Cry1Ab+Cry1F
VT2P	Cry1A.105+Cry2Ab2
Leptra	Cry1Ab+Cry1F+Vip3A



Technology	Bt traits
NBT-1&2	None
Intrasect	Cry1Ab+Cry1F
VT2P	Cry1A.105+Cry2Ab2
Leptra	Cry1Ab+Cry1F+Vip3A

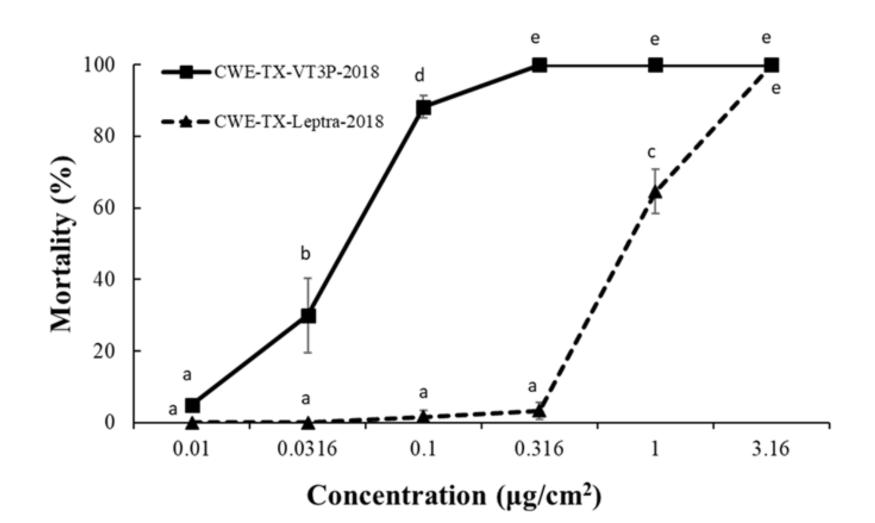
Technology	Bt traits
NBT-1&2	None
Intrasect	Cry1Ab+Cry1F
VT2P	Cry1A.105+Cry2Ab2
Leptra	Cry1Ab+Cry1F+Vip3A

Technology	Bt traits
NBT-1&2	None
Intrasect	Cry1Ab+Cry1F
VT2P	Cry1A.105+Cry2Ab2
Leptra	Cry1Ab+Cry1F+Vip3A

CORN EARWORM FEEDING IN LEPTRA CORN IN MS -2019

PROTEIN BIOASSAY-OVERLAY

Insects: 1) CEW-TX-Leptra-2018, collected from Leptra (Cry1Ab+Cry1F+Vip3A)


2) CEW-TX-VT3P-2018, collected from VT3P (Cry1F+Cry1A.105+Cry2Ab2)

Diet bioassays:

- 128-CD- International trays
- Vip3A1 protein provided by BASF
- 7-8 concentrations and a control
- 1 neonate/cell; 4 replications; 16 insects/rep.
- 28 °C, ~50% RH and photoperiod of 16:8(L:D)h.
- Larval instar & mortality were recorded after 7d.

MORTALITY

LC₅₀S / RESISTANCE RATIOS

Insect population*	N#	LC ₅₀ (95% CI)	Slope ± SE	X ²	df	Resistance
	IN."	$(\mu g/cm^2)$ §	Stope ± SE			ratio [£]
CEW-TX-VT3P-2018	448	0.041 (0.035, 0.050)	2.87 ± 0.30	18.9	22	1.0
CEW-TX-Leptra-2018	448	0.838 (0.686, 0.966)	4.93 ± 1.02	19.0	22	20.4

COTTON LEAF BIOASSAY

Cotton varieties: Widestrike 3 (WS3), expressing Cry1F+Cry1Ac+Vip3A protein and non-Bt.

Insects: 1) CEW-TX-Leptra-2018, collected from Leptra (Cry1Ab+Cry1F+Vip3A)

2) CEW-TX-SS, lab susceptible strain

Leaf tissue bioassays:

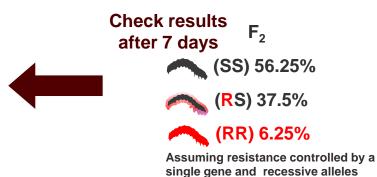
- Cotton planted in the field
- Cotton leaves excised at the 7-8 nodes growth stage
- Expression/non-expression of the Cry and Vip3A proteins using stripes
- Leaves were placed in Petri Dishes lined with moistened filter paper
- 5 neonate/dish; 4 replications; 30 insects/rep.
- 28 °C, ~50% RH and photoperiod of 16:8(L:D)h.
- Larval instar & survivorship were recorded after 7d.

COTTON LEAF ASSAY RESULTS

Cotton variety	Insect	Survivorship (%)	Average instar
Non-Bt	CEW-TX-Leptra-2018	$78.3 \pm 2.9 \text{ c}$	$3.39 \pm 0.01 \text{ c}$
	CBW-TX-SS	$82.5 \pm 3.2 \text{ c}$	$3.45 \pm 0.05 \text{ c}$
WideStrike 3	CEW-TX-Leptra-2018	$41.7 \pm 7.5 \text{ b}$	$2.68 \pm 0.03 \ b$
	CBW-TX-SS	$3.3 \pm 1.4 a$	$2.00 \pm 0.00 \text{ a}$

COLLECTIONS FROM VIP-TRAITED CROPS

	Cry	1Ac	Cry2	2Ab2	Vip3Aa39		
Insect strain	Resistance ratio-BZ	Resistance ratio-TX	Resistance ratio-BZ	Resistance ratio-TX	Resistance ratio-BZ	Resistance ratio-TX	
CBW-BZ-SS-TAMU	1.0	-1.2	1.0	-1.1	1.0	4.05	
CBW-TX-SS-TAMU	1.2	1.0	1.1	1.0	-4.05	1.0	
CBW-MS-SE-Leptra	21.55	26.33	3.25	2.93	3.20	13.00	
CBW-TX-SK-Leptra	5.18	6.33	3.64	3.27	-1.05	3.88	
CBW-TX-SK-BG3	99.27	121.33	3.46	3.11	-1.35	3.00	



F2 SCREENS FOR RESISTANT ALLELES

Full range bioassay for resistance confirmation



F₂ screen with discriminatory [] of Bt toxins

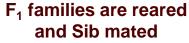
Larval collection and rearing

LARVAL COLLECTION METHOD F₂ SCREEN

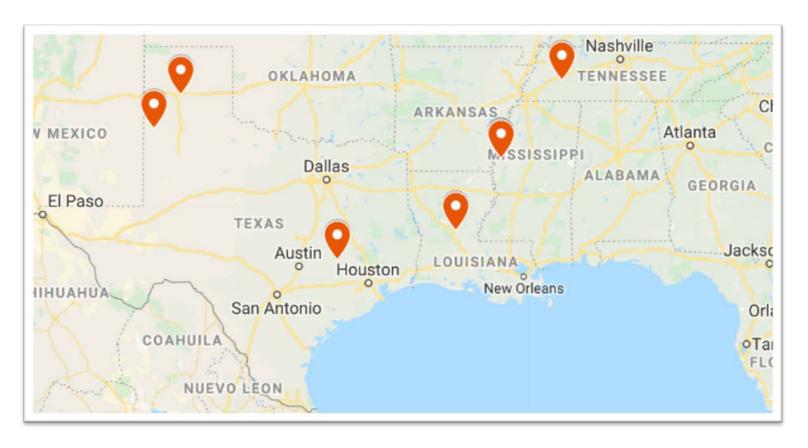
Andow, D. A., and D. N. Alstad. 1998.

F₂ family

Feral x susceptible (SS)



Establishing Isoline families


F₁ family

INSECT SOURCES

 Feral H. zea (moths and larvae) were collected from major Bt transgenic cotton and corn production regions of the southern US (April to October 2018 and 2019)

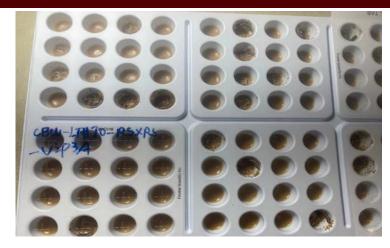
BIOASSAYS

Discriminatory concentrations (Yang et al., 2017)

- Cry1Ac (10 µg/cm²) (Bayer Crop Science)
- Cry2Ab2 (10 µg/cm²) (Bayer Crop Science)
- Vip3Aa51 (**3 µg/cm²**) (BASF)
- One F₂ neonate (<24 h) was placed per well 128 observations/F₂ family/toxin
- Survival was recorded after 7 days of exposure to the toxin
- Potentially resistant families were defined as those resulting in 5 survivors with at least 1 larva ≥ 3rd instar

H. zea-F₂ FAMILIES SURVIVING THE DIAGNOSTIC CONCENTRATION OF CRY1Ac (10 μg/cm²)

				7-day survival		
Location	Collection date	Method to establish the F ₂ families	Number of F ₂ families screened	Number of surviving families*	Number of 3 rd and 4 th instar larvae	
Texas	April-August, 2018 and 2019	Light trap/ Cross with SS♀	106	98	3695	
Louisiana	June, 2019	Cross with SS♀	21	19	313	
Mississippi	July, 2019	Cross with SS♀	15	15	535	
Tennessee	July, 2019	Cross with SS♀	6	6	217	
*5 survivors with at least 1 larva ≥ 3rd instar		Total	148	138 (93%)	4760	


H. zea-F₂ FAMILIES SURVIVING THE DIAGNOSTIC CONCENTRATION OF CRY2Ab2 (10 μg/cm²)

				7-day	survival
Location	Collection date	Method to establish the F ₂ families	Number of F ₂ families screened	Number of surviving families*	Number of 3 rd and 4 th instar larvae
Texas	April-August, 2018 and 2019	Light trap/ Cross with SS♀	120	47	273
Louisiana	June, 2019	Cross with SS♀	21	4	22
Mississippi	July, 2019	Cross with SS♀	15	11	75
Tennessee	July, 2019	Cross with SS♀	6	1	2
*5 survivors with at least 1 larva ≥ 3rd instar		Total	162	63 (39%)	372

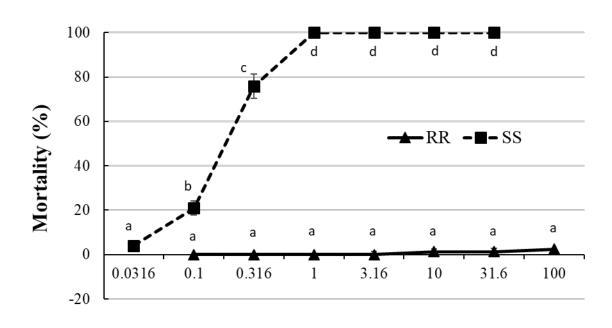
H. zea-F₂ FAMILIES SURVIVING THE DIAGNOSTIC CONCENTRATION OF VIP3Aa51 (3 µg/cm²)

				7-day	survival
Location	Collection date	Method to establish the F ₂ families	Number of F ₂ families screened	Number of surviving families*	Number of 3 rd and 4 th instar larvae
Texas	April-August, 2018 and 2019	Light trap/ Cross with SS♀	126	1	7
Louisiana	June, 2019	Cross with SS♀	21	1	21
Mississippi	July, 2019	Cross with SS♀	15	0	0
Tennessee	July, 2019	Cross with SS♀	6	0	0
*5 survivors with at least 1 larva ≥ 3rd instar		Total	168	2 (1.2%)	28

IDENTIFICATION OF VIP3A RESISTANT GENES IN H. ZEA

CBW-TX-LT#70-Vip3Aa-RR

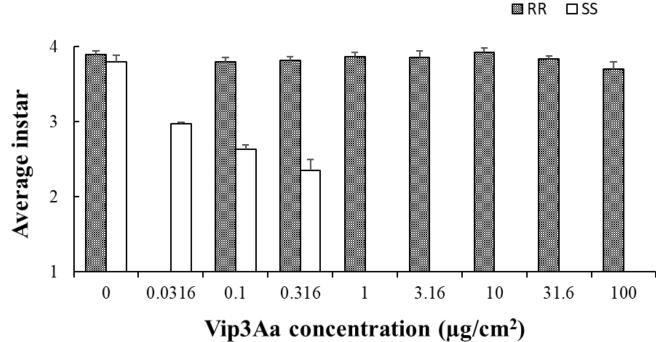
RS*RS selected on 30 ug/cm² of Vip3Aa


Insect strain	Vip3Aa concentration	No. insects assayed	Observed survivor				Expected survivor
			2 nd	8			
RS*RS 30 ug/cm ²	20 ualom?	F40	3 rd	8	E42*2E0/ of DD 420		
	30 ug/cm²	512	≥4 th	111	512*25% of RR = 128		
			Total	127			

Based on percentage survivorship, the Vip resistance appears to be controlled by a single recessive gene

Table 1. Mortality response (LC_{50}) of different genotypes of *Helicoverpa zea* to Vip3Aa39 toxins in diet-overlay bioassays.

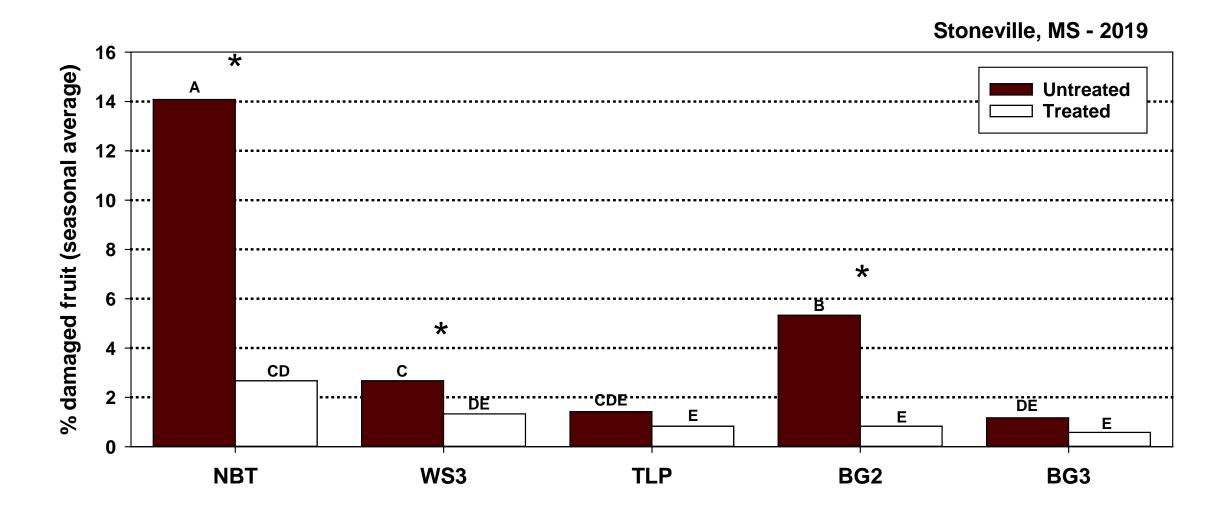
Bt protein	Population	N	LC ₅₀ (95% CL) (μg/cm ²)	Slope \pm SE	X^2	df	Resistance ratio
Tr 24 20	CBW-TX-SS	512	0.17 (0.14, 0.21)	2.84 ± 0.29	10.5	26	-
Vip3Aa39	CBW-TX-LT#70-Vip3Aa-RR	512	2.348E20	/	/	/	1.38E21



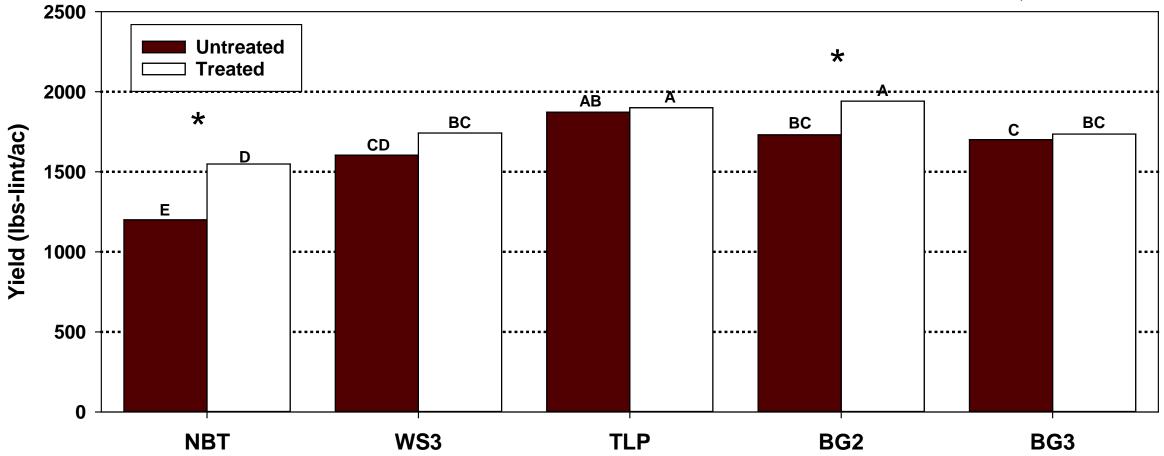
Vip3Aa concentration (μg/cm2)

Table 1. Mortality response (LC_{50}) of different genotypes of *Helicoverpa zea* to Vip3Aa39 toxins in diet-overlay bioassays.

Bt protein	Population	N	LC_{50} (95% CL) (µg/cm ²)	Slope \pm SE	X^2	df	Resistance ratio
Tr 24 20	CBW-TX-SS	512	0.17 (0.14, 0.21)	2.84 ± 0.29	10.5	26	-
Vip3Aa39	CBW-TX-LT#70-Vip3Aa-RR	512	2.348E20	/	/	/	1.38E21



FIELD PERFORMANCE


EFFICACY OF BT COTTON TECHNOLOGIES AND VALUE OF TREATING WITH INSECTICIDE

J. Gore, Mississippi State

QUESTIONS?

Thanks to:

- Bayer, BASF, Corteva, Syngenta and the University of Tennessee for suppling Bt toxins and/or partial funding
- USDA-NIFA for partial funding
- Cotton Incorporated for partial funding
- Texas Corn Producer Board for partial funding
- Cooperators for H. zea collections

David Kerns

Texas A&M University, College Station, TX

Email: <u>DLKerns@tamu.edu</u>

Phone: 318-439-4844

United States Department of Agriculture National Institute of Food and Agriculture

