Bt Resistance: Impacts and Updates

Summary of Bt Resistance Surveys David Kerns and Fei Yang – Texas A&M

	Texas and Mid-South Percentage of populations with RR > 10X					
<i>Bt</i> protein	2016 _{n=5}	2017 n=14	2018 n=13	2019 n=13	2020 n=5	2021 n=12
Cry1Ac	40%*	100%	94%	96%	100%	92%
Cry2Ab2	80%	77%	73%	73%	100%	92%
Cry1F	ND	100%	100%	100%	ND	ND
Vip3Aa	0%	0%	0%*	0%*	0%	0%

Resistance inheritance tests and F2 screen allele frequencies David Kerns and Fei Yang – Texas A&M

	Int			
<i>Bt</i> protein	Sex linkage	Genes	Dominance	Allele frequency
Cry1Ac	Autosomal	Polygenic	Incompletely recessive/completely dominant	(0.53-0.59)
Cry2Ab2	Autosomal	Polygenic	Incompletely dominant	(0.17-0.19)
Cry1F	ND	ND	ND	ND
Vip3Aa	Autosomal	Monogenic	Completely recessive	0.004-0.017

Very high

High

Low but not rare

Bollworm Damage in Cotton

Mr. Russ Godbold, M.S. Student

Evolution of Bollworm Resistance to Bt Traits

(Mostly Theoretical – Kinda!)

Squares Damaged

Resistance Ratio Trend for Vip3a David Kerns and Fei Yang – Texas A&M

Corn

Soybeans, Cotton Grain Sorghum, Peanut

April

May

June

July

August

September

Temporal Emergence of Bollworm

Resistance is Driven by Selection in Corn

Consequences for Corn EPA Focus

Refuge Deployment Options

When both rootworm and caterpillar traits are present in a hybrid, growers are required to follow refuge requirements and deployment strategies that satisfy the criteria for both. For example, if a field is planted to a hybrid that has a single caterpillar trait (requires 50% refuge up to ½-mile away) and a single rootworm trait (requires 20% refuge within field or adjacent to the field), the total refuge for that field has to be 50%. There are several ways that this can be accomplished. The entire 50% refuge can be planted within the field or adjacent to the field. Another possibility is that 20% of the refuge may be planted within the field or adjacent to the field and the remaining 30% within ½-mile of the field. Examples of refuge deployment options are illustrated here.

Blended refuge corn products (i.e., non-Bt seed mixed with Bt) may be encountered. This refuge strategy was developed for the Midwest. If these products are planted, a separate structured refuge is still required.

Southwestern Corn Borer Trapping Mississippi - 2020

Southwestern Corn Borer Trapping Mississippi – 2021

Percent Fruit Damage Over Time | |

DIVISION OF AGRICULTURE
RESEARCH & EXTENSION
University of Arkansas System

4 Trials - Gus Lorenz

Bollworms Under BloomtagsMr. Russ Godbold

Bollworm Moth Control to Prevent Economic Yield Damage in Mississippi Cotton

Brett Farmer

M.S. Student

Total Eggs Per Plant

2018 Cotton Variety Yields

Best 2-Gene minusBest 3-Gene= 109 lbs

• $0.70 \times 109 = 76.30

• 2 Apps ~ \$40-50

DP 1646 B2XF	1223 [*]
NG 3729 B2XF	1131
DG 3526 B2XF	1119
ST 5471GLTP	1114
DP 1845 B3XF	1109
PHY 430 W3FE	1107
PHY 320 W3FE	1090
DP 1835 B3XF	1085
PHY 480 W3FE	1034
ST 5122GLT	1023

2020 Cotton Variety Yields

Best 2-Gene minus
 Best 3-Gene

= -54 lbs

• 2 Apps ~ \$40-50

PHY 443 W3FE	1188
DP 2038 B3XF	1139
PHY 400 W3FE	1136
DP 2012 B3XF	1134
DP 1646 B2XF	1118
PHY 390 W3FE	1110
ST 4990 B3XF	1105
NG 4936	1058
DG 3520 B2XF	1040
NG 4098 B3XF	998

