Fertility Management Considerations for MidSouth Cropping Systems

Dr. Justin McCoy Assistant Professor Agronomy Mississippi State University North Mississippi Research & Extension Center

Acknowledgements

- Bayer CropScience
- Syngenta Crop Protection
- Pursell Agri-Tech
- Nutrien Ag
- Stine Seed Company

- AgXplore International
- CHS inc.
- Innvictis Crop Care
- Progeny Ag
- U.S. Borax

Fertilizer??

Adapted from: DTN

MISSISSIPPI STATE UNIVERSITY

NORTH MISSISSIPPI RESEARCH & EXTENSION CENTER

Fertilizer Use Trends in MS

P₂**O**5 -47,455 -23 lb/a

Adapted from: IPNI NUGIS Data www.ipni.net/nugis

What's in a Bushel?

- 1 Bushel of Soybean Contains
 - 2.51 lb N
 - $0.52 \text{ lb } P_2O_5$
 - 1.88 lb K₂O
 - 0.21 lb Mg
 - 0.18 lb S

Yield Level	N needed	N removed	P ₂ O ₅ needed	P ₂ O ₅ removed	K ₂ O needed	K ₂ O removed
40	160	100	34	21	188	76
60	239	151	51	32	282	113
80	318	201	67	42	376	150

Adapted from: Pieralisi et al. unpublished

What's in a Bushel?

- 1 Bushel of Corn Contains
 - 0.67 lb N
 - 0.35 lb P₂O₅
 - 0.25 lb K₂O
 - 0.09 lb Mg
 - 0.08 lb S

Ν	P ₂ O ₅	K ₂ O	Mg	S
101	53	38	14	12
121	63	45	16	14
141	74	53	19	17
	N 101 121 141	NP2O5101531216314174	NP2O5K2O101533812163451417453	NP2O5K2OMg101533814121634516141745319

Adapted from: <u>http://www.ipni.net/article/IPNI-3296</u>

Base P and K Fertility

Base P and K Fertility

Base P and K Fertility

Sulfur Fertility

Corn

Nitrogen Management

Nitrogen Management

Nitrogen Management Reclamation Study

Fertilizer and Cover Crops

- Carvalho et al. (2011) suggests that mineralization of nutrients from cover crop residues were able to maintain corn yields in Brazil.
- Hutchinson et al. (1995) reported that 34% more N was needed by a cotton crop in Alabama following a winter wheat cover crop when compared to a fallow field.
- Cover Crop system and species effect on fertility needs?

Cover Crop Use Trends

		Percent	25	Pennsylvania
Rank	State	Increase	26	Nevada
1	lowa	156.3%	27	Oregon
2	Arizona	123.2%	28	Delaware
3	Illinois	122.2%	29	Maryland
4	Missouri	115.9%	30	New Jersey
5	Mississippi	111.4%	31	Idaho
6	Nebraska	109.3%	32	North Carolina
7	Vermont	101.6%	33	Louisiana
8	Ohio	100.9%	34	Montana
9	North Dakota	89.1%	35	Kentucky
10	Maine	88.8%	36	Alabama
11	South Dakota	88.5%	37	Texas
12	Tennessee	85.4%	38	Wisconsin
13	Arkansas	82.9%	39	Connecticut
14	Kansas	72.6%	40	Hawaii
15	New Hampshire	65.7%	41	Utah
16	Indiana	57.1%	42	Florida
17	Michigan	54.0%	43	California
18	South Carolina	53.1%	44	Colorado
19	Oklahoma	50.6%	45	Massachusetts
20	Georgia	43.4%	46	Washington
21	Minnesota	41.9%	47	Rhode Island
22	New York	37.2%	48	Wyoming
23	Virginia	35.7%	49	New Mexico
24	West Virginia	33.9%	50	Alaska

33.4%

33.0%

29.7%

25.7%

25.4%

24.6%

22.9% 22.7%

18.2%

17.9%

15.0%

11.3%

10.5%

7.6%

7.3%

6.6%

2.9% 2.9%

2.8%

1.8%

-9.0% -12.0%

-25.8%

-74.1%

Mississippi: 140,000 acres of cover crops (4.2%).

Nitrogen requirements following cover crops

Nitrogen Trial

Cash Crop: Corn Factor A: No cover, Cereal Mix, Clover Mix Factor B: 0, 100, 150, 200, 250 lb ai/a N

Data was subjected to ANOVA using the PROC MIXED procedure in SAS v. 9.4 and analyzed at (p < 0.10).

Nitrogen requirements following cover crops

Nitrogen requirements following cover crops

P and K availability following cover crops

Phosphorus Trial

Cash Crop: Soybean Factor A:

No cover, Cereal Rye, Winter Wheat, Crimson Clover, Tillage Radish **Factor B:**

No Fertilizer, 46 lb ai/a P_2O_5 - Fall applied

Potassium Trial

Cash Crop: Soybean Factor A:

No cover, Cereal Rye, Winter Wheat, Crimson Clover, Tillage Radish Factor B:

No Fertilizer, 60 lb ai/a K_2O - Fall applied

P and K availability following cover crops

P and K availability following cover crops

Conclusions

- Base fertility is key to Corn and Soybean yields in Mississippi.
- Don't forget to manage your nitrogen.
- How will cover crops effect your fertility program?
- Economics will drive cover crop and fertility decisions.

Questions?

SIPPI STATE UNIVERSITY MISSISSIPPI RESEARCH

SION CENTER

Justin McCoy North Mississippi Research and Extension Center Email: Justin.mccoy@msstate.edu Phone: 662-251-0614

Photo: McCoy

