Resistance to Tarnished Plant Bugs in Cotton Varieties?

Fred Bourland Glenn Studebaker Tina Gray Teague

Morphological Traits Associated with TPB Susceptibility

Phil Tugwell liked to jest, "The reason that Frego bract cottons appears to resist boll weevils is that after plant bugs get through, no self-respecting boll weevil would attack them!"

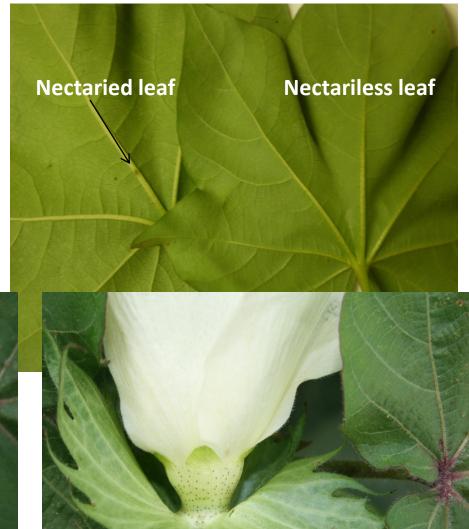
Frego bract = Susceptible check

Partially resistant to boll weevil

Highly susceptible to plant bugs Frego bract lines usually have ~90% dirty flowers while most non-Frego lines are <50%.

Morphological Traits Associated with TPB Susceptibility

Glabrous (smooth) stem & leaf



Okra & super okra leaf

Nectaries normally found on cotton plants, provide food source for TPB.

3 nectaries on flower/boll base

3 nectaries between bracts at base of calyx

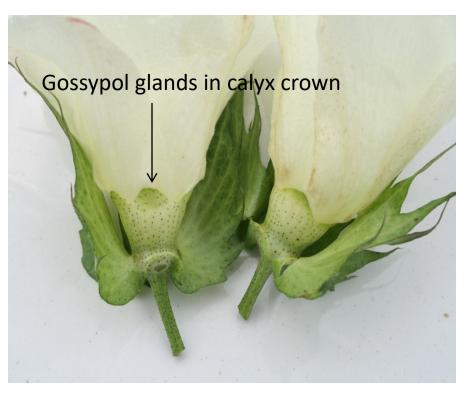
Nectariless

Entomological studies: TPB populations reduced in nectariless lines.

Isoline studies: Yield of nectariless line = yield of nectaried line.

Much breeding effort to develop nectariless varieties, but only three successful nectariless varieties have been released:

> Stoneville 731N Stoneville 825 DP 0935 B2RF



Pubescent stems and leaves

High glanding types (lower preference)

Early maturity (escape or preference?)

Resistance to TPB in Cotton Varieties?

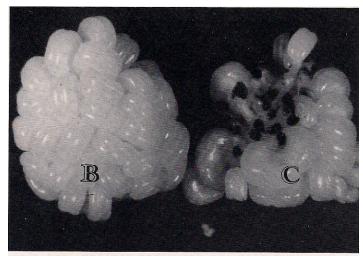
Emerging Transgenic Technology

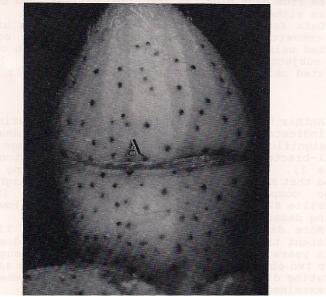
Likely to be available:

- Stacking of herbicide resistance genes.
- Resistance to other herbicides (Dicamba, 2-4D, HPPD).
- Additional constructs of Bt genes.
- ✓ Resistance to *Lygus* species (plant bugs).
- Drought tolerance gene for arid regions.
- Reniform nematode resistance.

Less likely to be soon available:

- Additional stress tolerance.
- Yield improvement genes.
- Fiber quality genes.
- Hybrid cotton to deliver transgenes.

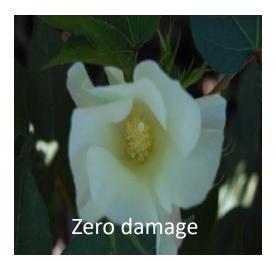




Evaluating Response to TPB in Cotton Varieties

Square-Slicing Technique – Maredia, Tugwell, Waddle & Bourland. 1994. Southwestern Entomologist 19:63-70.

- 1. Random samples of 6-10 mm squares having no boll weevil or worm damage.
- 2. Slice each square across broadest section of bud (A), save apex.
- 3. Expose anthers in square apex by gently pressing with rolling motion between thumb and forefinger.
- 4. Examine intact anthers for discoloration no damage (B); damaged (C).
- 5. Classify by % of anthers damaged or as % of squares/flowers damaged.


Evaluating Response to TPB in Cotton Varieties

"Dirty flower" Technique

Without boll weevil, examine white flowers & classify as zero, <50%, or >50% damaged anthers, then determine approximate % damage index (using a weighted mean).

OR - Examine white flowers & classify as undamaged or damaged.

Over several tests, found that "% damage index" and "% damaged" were highly correlated (r > 0.95).

Evaluating Response to TPB in Cotton Varieties

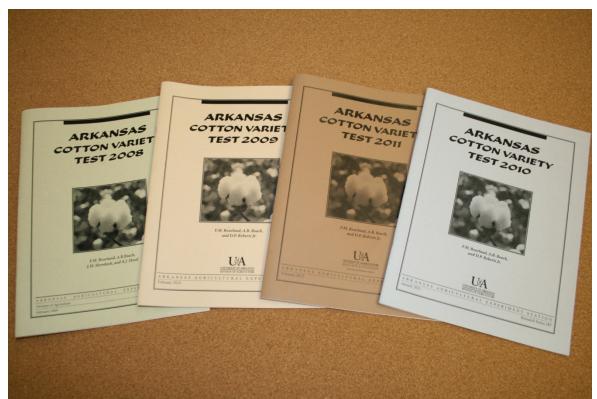
Current TPB Procedures

- 1. Plant highly susceptible check in 4-row strips leaving 12 rows between strips (field adjacent to corn is preferred).
- About 3-4 weeks later (late May), plant small plot (1-row x 20 feet) tests in the 12 rows (1 replication/row). Include susceptible check(s) in each test.
- 3. No insecticides applied for TPB.
- 4. When TPB damage can be readily seen in flowers of susceptible (early August), initiate examination for "dirty flowers".
- 5. Examine 6 white flowers/day for 5 to 8 days & record number damaged. Calculate one accumulative % dirty flowers over sampling days for each plot.

Evaluating Response to TPB in Cotton Varieties

4-rows of Frego

Yield & height variation



Tarnished plant bug, "% dirty flowers" for 25 entries in 2011 Main Arkansas Test

Variety	% dirty	% frego	Variety	% dirty	% frego
ST 5288 B2RF	32	35	CG 3220 B2RF	45	50
PHY 367 WRF	32	35	DP 1028 B2RF	45	50
SSG UA 222	35	39	PHY 499 WRF	45	50
DP 1252 B2RF	35	39	SSG HQ110	46	51
DP 0912 B2RF	37	41	SSG HQ210	47	52
AM 1511 B2RF	38	41	Ark 0219-15	49	54
DP 0920 B2RF	38	42	ST 5458 B2RF	50	55
CT10624 B2RF	39	43	FM 1740 B2F	51	56
PHY 565 WRF	39	43	AM UA48	52	57
ST 4288 B2RF	40	44	DG 2450 B2RF	54	60
DP 1133 B2RF	42	46	PHY 375 WRF	61	67
AM 1550 B2R	43	48	Frego check 1	87	-
DG 2570 B2RF	43	48	Frego check 2	94	-

LSD0.10 = **9.6**; C.V. = **30.3%**; R2*100 = **54.8**

Annual TPB data available at www.ArkansasVarietyTesting.com

Tarnished plant bug, response over years (through 2010), % "dirty flowers" expressed as % of Frego bract check

Older Varieties, rank out of 32

Variety	% Frego	Rank	Tests
DP0935ne B2RF	28	1	3
ST 5288 B2RF	28	1	3
DP 0924 B2RF	33	3	3
AM 1550 B2RF	34	5	4
ST 5458 B2RF	35	7	4
DP 174 RF	35	7	4
DP 393, ck.	36	10	6
FM 1740 B2R	37	12	3
DG 2570 B2RF	37	12	4
CG 3220 B2RF	38	16	4
PHY 375 WRF	40	23	4
PHY 315 RF	40	23	4

Newer Varieties, rank out of 32

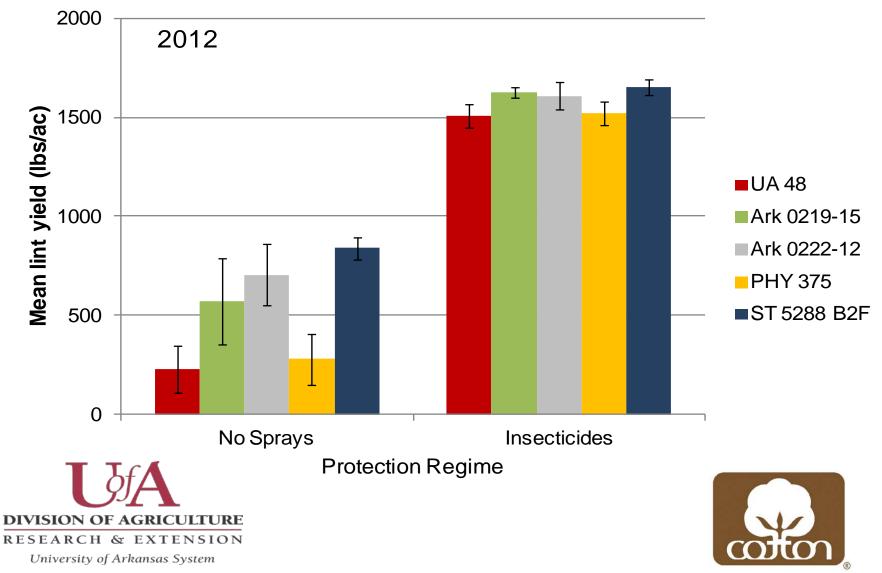
Variety	% Frego	Rank	Tests
PHY 367 WRF	35	7	2
09R619 B2R2	38	16	2
DP 0920 B2RF	39	19	2
PHY 565 WRF	39	19	2
DP 1028 B2RF	39	19	2
DP 0912 B2RF	40	23	2
FM 1773 LLB2	44	27	2
BCSX 1010B2F	46	28	2
DP 1032 B2RF	46	28	2
PHY 569 WRF	46	28	2
DP 0949 B2RF	46	28	2
UA48	61	32	2

Tarnished plant bug, response over years (through 2011) For 25 entries in 2011 Main Arkansas Test

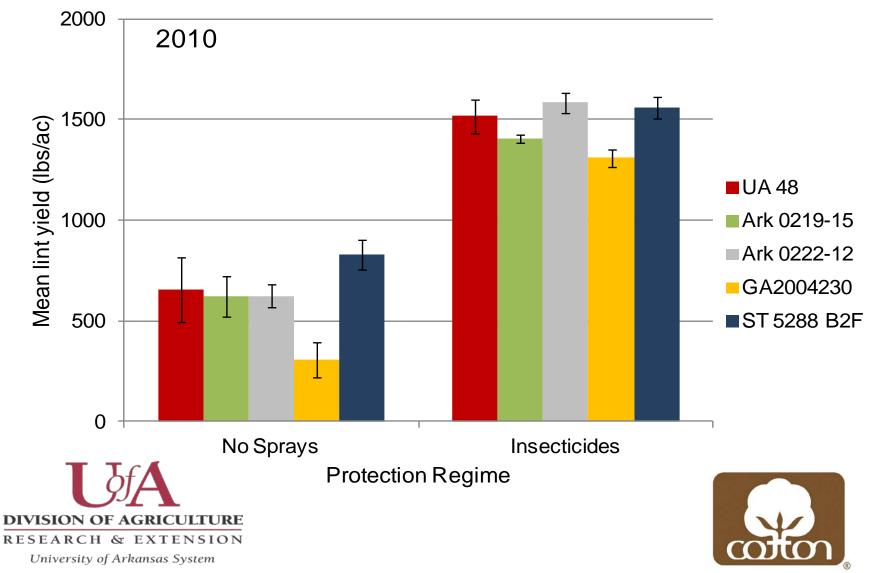
% "dirty flowers" expressed as % of Frego bract check

Variety	% Frego	Tests
ST 5288 B2RF	34	4
PHY 367 WRF	37	3
AM 1511 B2RF	38	2
SSG UA 222	39	2
CT10624 B2RF	41	2
AM 1550 B2R	42	5
DP 1252 B2RF	43	2
ST 4288 B2RF	43	4
DP 0920 B2RF	44	3
PHY 565 WRF	44	3
ST 5458 B2RF	44	5
DP 0912 B2RF	44	3

Variety	% Frego	Tests
DG 2570 B2RF	45	5
CG 3220 B2RF	46	5
DP 1028 B2RF	46	3
FM 1740 B2F	48	4
DP 1133 B2RF	49	2
PHY 499 WRF	50	2
SSG HQ210	51	4
PHY 375 WRF	51	6
SSG HQ110	51	2
Ark 0219-15	55	2
DG 2450 B2RF	56	2
AM UA48	66	3


Response to Tarnished Plant Bug by Cotton Varieties in Large Plots (24 rows x ~80 feet) at Keiser, AR, in 2012

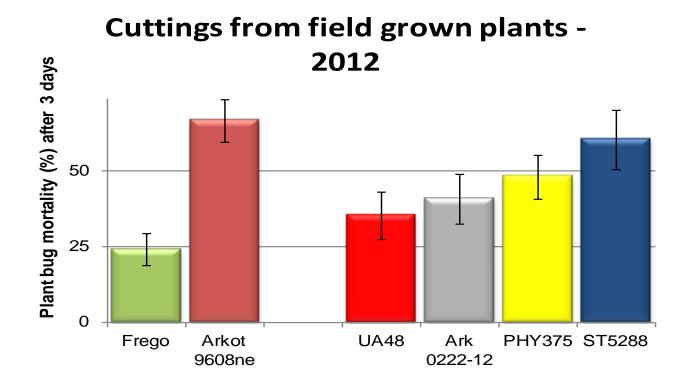
Variety	трв	Untreated yield, lb/a	Treated yield, lb/a	Treated – Untreated	No. of trts
ST 5288 B2RF	Res	949 e	1035 cd	87	2
SSG UA 222	Res	1074 bc	1187 a	113	2
PHY 375 WRF	Sus	844 f	1030 cde	182	5
AM UA48	Sus	973 de	1155 ab	182	4



Response to Tarnished Plant Bug by Cotton Varieties at Marianna, AR, in 2012

COTTON INCORPORATED

Response to Tarnished Plant Bug by Cotton Varieties at Marianna, AR, in 2010



COTTON INCORPORATED

Terminal Cuttings from field grown plants

- Laboratory feeding studies with TPB were performed with main stem terminal cuttings that included the upper 6 to 10 squaring nodes.
- Cuttings from each line were infested with either 3 newly hatched TPB nymphs. Plants were covered with sleeve cages.
- Assessed nymph survival after 3 days

Resistance to TPB in Cotton Varieties?

Conclusions

- 1. Variation in varietal response to TPB can be measured in small plots using the dirty flower technique.
- 2. TPB populations require more time to reach treatment threshold and inflict less damage on varieties that relatively low dirty flower %.
- 3. Nectariless and dense pubescence morphological traits confer some degree of TPB resistance, but similar levels can be found in some nectaried, glabrous types – suggesting a different mechanism of resistance.
- 4. A method to better evaluate TPB resistance on an individual plant basis is need to combine and enhance these mechanisms of resistance.

Annual TPB data available at www.ArkansasVarietyTesting.com

