SULFUR NUTRITION IN ROW CROPS

Ross Bender Sr. Agronomist December 4th, 2018 Twitter: @RossRBender

GET TO KNOW ROSS...

• Contrasting Cleveland's...

	Cleveland, MS	Cleveland, WI
Location	34.5° Lat	43.5° Lat
Dec 4 th Record Low	16°F	-16°F
City Population	12,101	1,492
Bovines in County	?	~110,000

- State Laws:
 - Illegal to serve margarine at restaurant unless requested
 - · Cows always have the right of way

Do cows enjoy being treated like royalty or do they have a genius plan to take over WI and if so, why!?

WHO IS MOSAIC?

<u>Who We Are</u>: World's largest single source supplier of finished phosphates and potash.

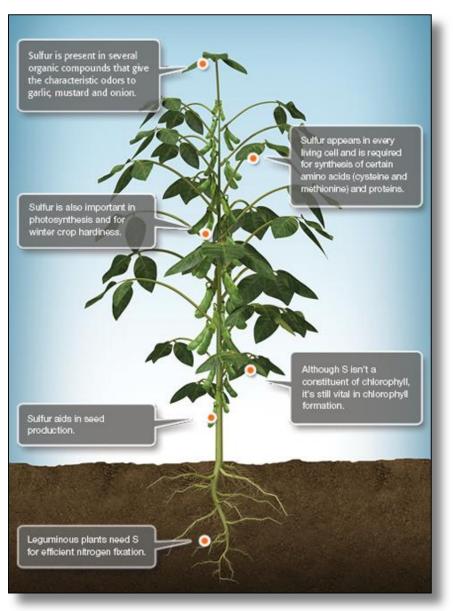
<u>Mission</u>: Help the world grow the food it needs.

Premium Products:

MicroEssentials S10: 12-40-0-10S MicroEssentials SZ: 12-40-0-10S-1Zn

Both products: Sulfur is a 50:50 blend of sulfate and elemental sulfur

Same Analysis: 0-0-58-0.5B New Formulation of B: 50:50 blend of fast and slow release



Analysis: 0-0-21.5-10.5 Mg-21 S

TODAY'S OBJECTIVES

- WHAT ARE THE SULFUR BASICS?
- DO CROPS NEED SULFUR?
- WHAT TOOLS ARE AVAILABLE?
- Q&A (TIME PERMITTING)

SULFUR NUTRITION

- Secondary <u>macro</u>nutrient.
 - 4th most needed nutrient after N, P, and K.
- Atmospheric sulfur deposition has been greatly reduced.
- Required for protein synthesis (2 amino acids).
- Required for nodule formation on the root hairs of legume crops.
- Plants do not mobilize S from older tissues.

RELATIVE CONTRIBUTIONS OF SULFUR FOR CURRENT PRODUCTION SYSTEMS

Source of S Relative Amount

Organic Matter

Atmospheric Deposition

Plant Remobilization

Fertilizer

Information expressed here is not based on actual data, and only represents the thoughts of Ross Bender.

ORGANIC MATTER (OM) MINERALIZATION

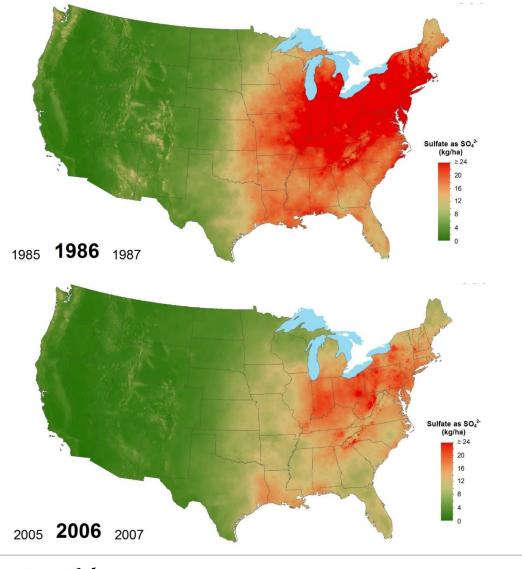
Each 1% OM Contains...

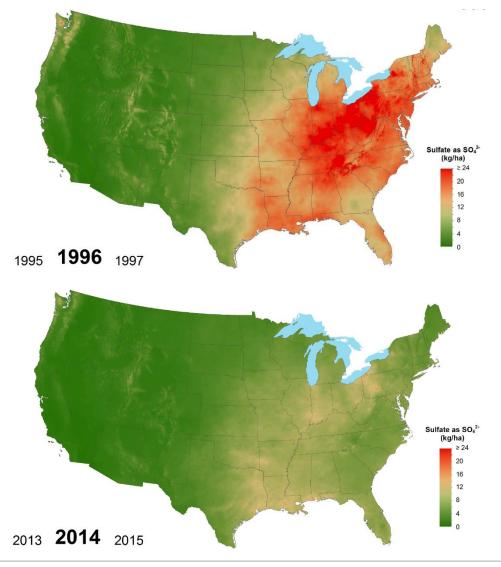
- 100 lbs/ac of organic S (unavailable)
- 2.0-2.5 lbs/ac inorganic S (available)

Key factors influencing availability

- Moisture
- Temperature

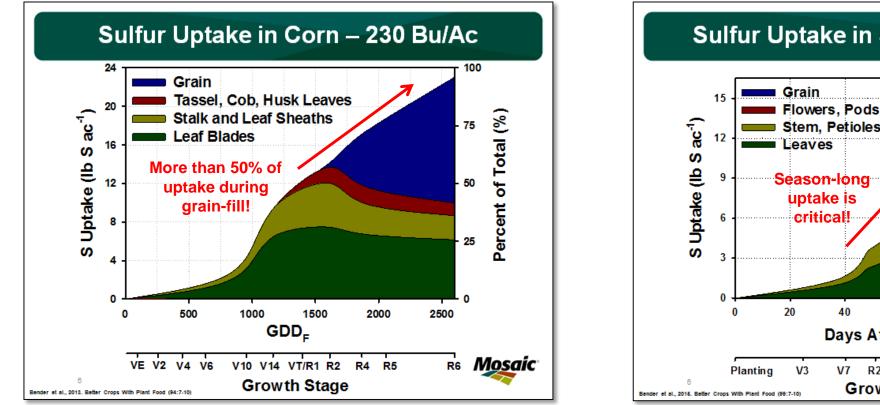
Conditions for deficiency?


- Vegetative: cool/wet
- Reproductive: hot/dry

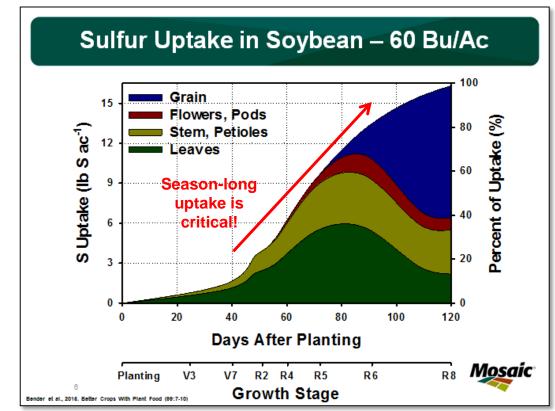

Recommendations for Sulfur on Corn (Purdue University)

- Low CEC soils: 25 lbs S/Ac annually
- Medium High CEC Soils: 15 lbs S/Ac annually
- When using elemental sulfur only, combine with sulfate source
- More info: <u>https://www.agry.purdue.edu/ext/corn/news/timeless/SulfurDeficiency.pdf</u>

REDUCED ATMOSPHERIC DEPOSITION OF S


Micro**Essentials**

Data courtesy of National Atmospheric Deposition Program/National Trends Network (http://nadp.isws.illinois.edu) Data represents annual content of sulfate deposition in precipitation (kg/ha).



WHY IS SULFUR IMPORTANT?

Maximum grain productivity requires season-long S availability, especially for corn and soybean:

Note the limited plant mobility of S in corn to supply intra-seasonal periods of plant stress.

SOYBEANS NEED SEASON-LONG SULFUR

	Yield Level		
Parameter	Low	Medium	High
Yield (bu/ac)	54	66	82
S Uptake (Ibs/ac)	13.3	15.8	19.0
S Removal (Ibs/ac)	9.1	10.9	13.4
Root Uptake (%)	50	54	58
Remobilization (%)	50	46	42

Adapted from Gasper et al., 2018.

RELATIVE CONTRIBUTIONS OF SULFUR FOR CURRENT PRODUCTION SYSTEMS

Source of S Relative Amount

Medium

Low

Low

High

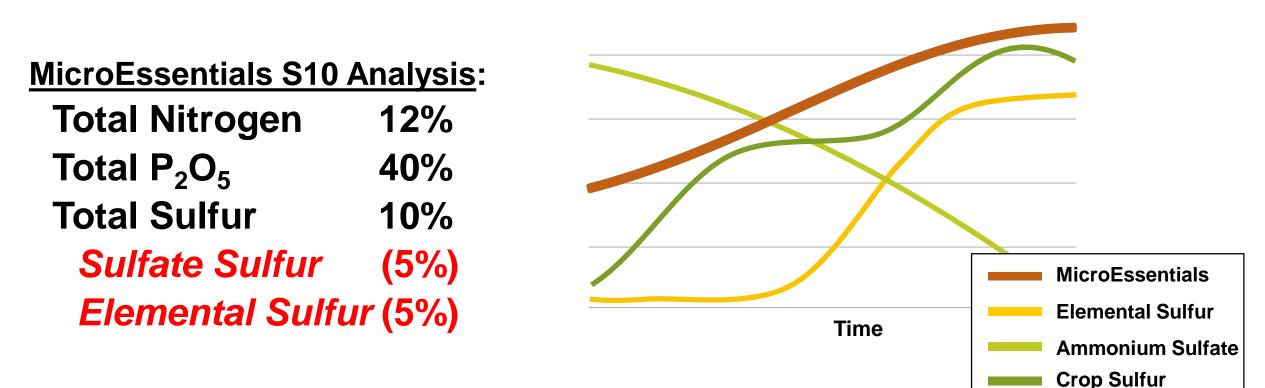
Organic Matter

Atmospheric Deposition

Plant Remobilization

Fertilizer

Information expressed here is not based on actual data, and only represents the thoughts of Ross Bender.


MASS BALANCE OF SULFUR

	Corn (230 bu/Ac)	Soybean (60 bu/Ac)	
Need:	X 7	lbs S/Ac	
Uptake	23	17	
Removal	13	10	
Supply:			
Atmospheric Deposition	6	6	
Organic Matter (2% * 2.5 lbs S/Ac)	5	5	
Previous ES Application	?	?	
Deficit:	12	6	
Suggested application rate (based on 60% efficiency)	20 lbs	10 lbs	

continue to encourage S fertilization on corn and soybean!

DUAL SOURCES FOR MAXIMUM AVAILABILITY

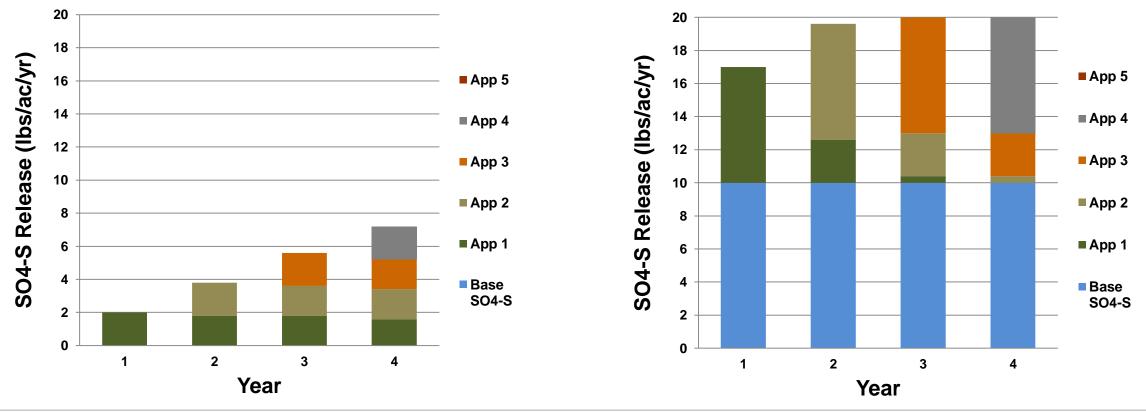
MicroEssentials has both fast (Sulfate) and slow-release (Elemental S) sulfur sources for season-long S availability.

Requirements

OXIDATION 101: FORMATION OF PLANT AVAILABLE SULFATE

Oxidation: Elemental S (90%) 96% 100 MicroEssentials S10 Conversion of plant unavailable <u>elemental</u> (%) 80 sulfur to plant available sulfate: 70% Oxidized 60 $2S + 3O_2 + 2H_2O_3$ 40 (bacteria in soil) S Ш 18% 20 10% 2 SO₄²⁻ + 4 H⁺ ✓ 0 200 400 600 800 0

Time (days after application)


Model Assumptions: pH: 6.8; OM: 1.5%; Cleveland, MS *Using S Oxidation Model from University of Adelaide.

Micro**Essentials**

OXIDATION 201: ANNUAL S APPLICATIONS

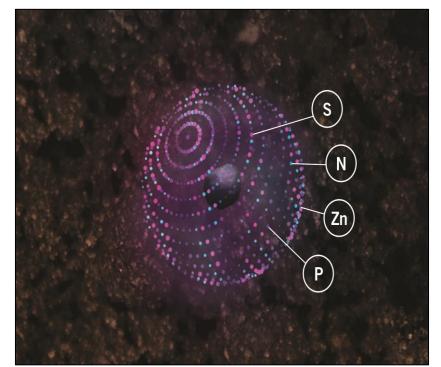
Granular Elemental S (20 lbs ES)

Micro**Essentials**®

<u>Model Assumptions</u>: pH: 6.8; OM: 1.5%; Cleveland, MS *Using S Oxidation Model from University of Adelaide.

MicroEssentials SZ

(10 lbs SO_4^{2-} + 10 lbs ES)


WHAT IS BALANCED CROP NUTRITION?

Providing the right mixture of nutrients in a ratio that optimizes yield and profitability.

Analysis: MicroEssentials S10 MicroEssentials SZ

Total Nitrogen	12%
Total Phosphate (P ₂ O ₅)	40%
Total Sulfur	10%
Sulfate Sulfur	(5%)
Elemental Sulfur	(5%)
Total Zinc	1%

FUSION[™] TECHNOLOGY

MICROESSENTIALS ON CORN

MicroEssentials[®] S10[™] vs. DAP

Trial Details

Locations and Crop Management:

CROP: Corn (Zea mays)

YEARS: 2008-2013

DATA SOURCE: Field studies conducted by university and/or third-party, independent researchers.

CROPPING CONDITION:

- P Rate: 65–90 lbs P₂O₅/ac
- Balanced across all treatments

MicroEssentials[®] SZ[™] vs. DAP

Trial Details

Locations and Crop Management:

CROP: Corn (Zea mays)

YEARS: 2004-2013

DATA SOURCE: Field studies conducted by university and/or third-party, independent researchers.

CROPPING CONDITION:

- P Rate: 65–90 lbs P₂O₅/ac
- Balanced across all treatments

MICROESSENTIALS ON COTTON

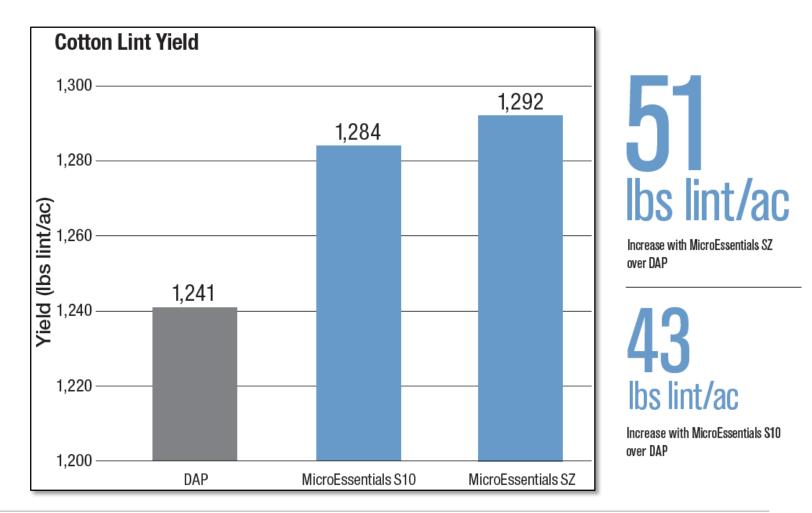
Trial Details

Locations and Crop Management:

CROP: Cotton (Gossypium hirsutum L.)

YEARS: 2016-2017

LOCATIONS: 8 trials across the United States – GA, MS, NC, SC, TN, TX


CROPPING CONDITIONS:

All trials conformed to local cropping practices.

- P Rate: 50 lbs P₂O₅/ac applied as DAP (18-46-0), MicroEssentials S10 (12-40-0-10S) or MicroEssentials SZ (12-40-0-10S-1Zn)
- S Rate: 12.5 lbs S/ac from the MicroEssentials treatments
- K Rate: As required by soil test
- Application Timing: Preplant

Micro**Essentials**

Application Method: Broadcast incorporated

SULFUR ON SOYBEAN

TRIAL OBJECTIVE

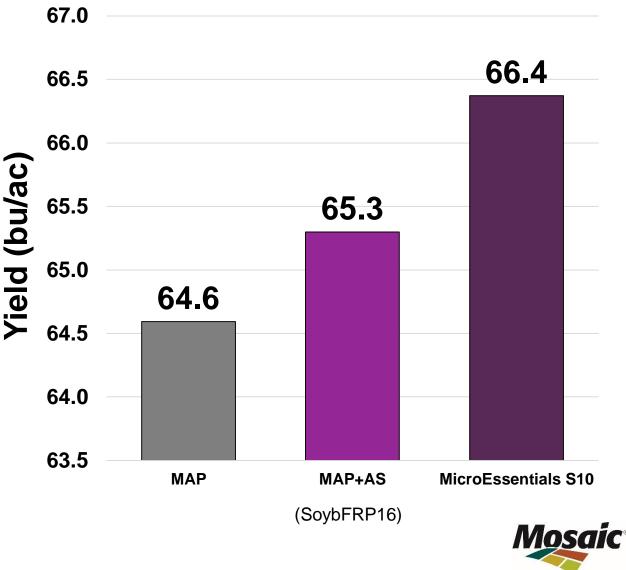
Evaluate MicroEssentials S10 (12-40-0-10S) fertilizer vs. MAP (11-52-0) vs. MAP + AS (21-0-0-24S) with a base application of MOP (0-0-60).

TRIAL DETAILS

CROP: Soybean

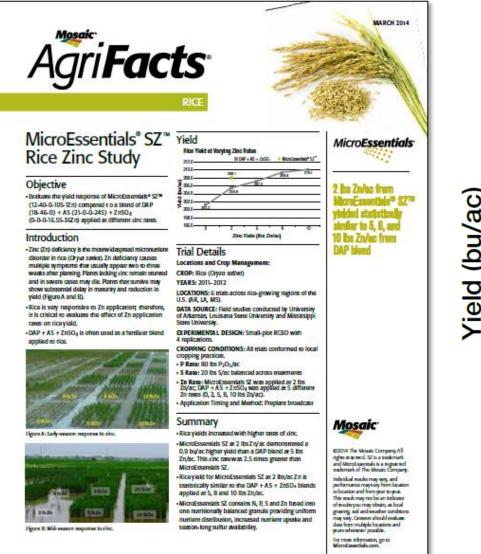
YEAR: 2016

LOCATION: 8 trials (IL, IN, MI, IA, OH, ON, MO)

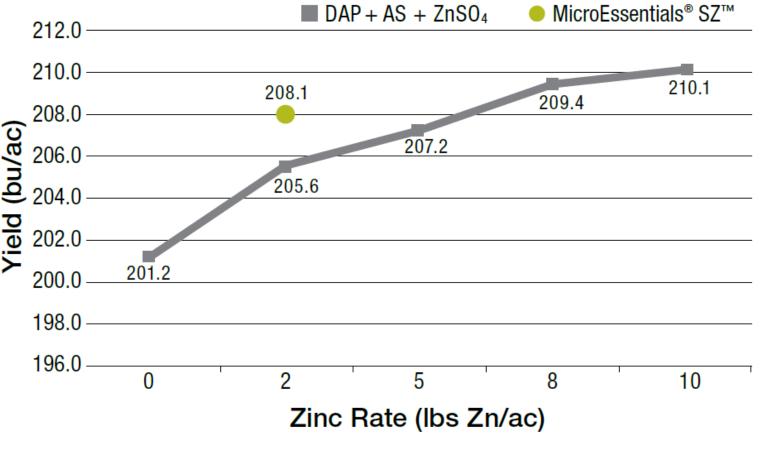

DATA SOURCE: Small-plot (RCBD) trials conducted by university and third-party contract researchers.

P RATE: 40 lbs P_2O_5/ac

K RATE: 60 lbs K_2O/ac


S RATE: 10 lbs S/ac

CROPPING CONDITIONS: All trials conformed to local cropping practices.



Source: Data from 8 trials during 2016 by university and independent, third party researchers.

MICROESSENTIALS ON RICE

Rice Yield at Varying Zinc Rates

Mosaíc

KEY TAKEAWAYS ON SULFUR

- Sulfur management is a system. We receive less S from "acid rain" today.
- Plants require more S (in part due to high yields) which needs to be available for longer for maximum grain yield.
- Significant University research has been done on soybean nutrition. Current data shows they stand to benefit from S, even if only 5-10 lbs S/ac.
- MicroEssentials has two forms of S, sulfate and elemental S, for season long availability.

For more information, please visit...

Twitter: <u>@RossRBender</u> K-Mag: <u>www.KMag.com</u> Aspire: <u>www.AspireBoron.com</u> MicroEssentials: <u>www.MicroEssentials.com</u>

