Accuracy of Round Module Harvester Handlers and Minimizing Plastic Contamination

Wesley Porter, Ed Barnes, Seth Byrd, Guy Collins, Jeremy Kichler, Randy Norton, Brian Pieralisi, Jared Whitaker

2nd Annual Great Plains Cotton Conference
February 24, 2021
Current Situation

• Cotton Modules are currently weighed in the field using large truck style scales to weigh the round bales from the John Deere Cotton Pickers.

• However, JD 7760 (CP/CS) and CP/CS 690’s have the option to add an on-board module weighing system.
Question

• Can the on-board module weighing system be utilized to weigh trial data eliminating the need to have additional large flat scales present during harvest?

– The advantages of having this system are:
 • Simplicity
 • Elimination of scale maintenance and transportation
 • Shorten time and increase effectiveness of On-Farm trials
 • Reduce equipment requirements during harvest
Objectives

• The main objectives of this study were to:
 – Determine the reliability and accuracy of John Deere’s on-board module weighing system compared to traditional trial evaluation methods.
 – Evaluate the potential of the on-board system to be utilized for on-farm research trial evaluation.
2018-2019 Georgia Comparisons

- 2018 Colquitt County On-Farm Variety Trial (42)
- 2019 Colquitt County Fungicide Trial (9)
- All Data from 7 on farm trials (112 comparisons)
Results: 2018 Colquitt County OFT

JD On-board Scale (lbs) vs. UGA Platform Scale (lbs)

Regression line: $y = 0.9141x + 340.47$

$R^2 = 0.9353$
Results: 2018 Colquitt County OFT

<table>
<thead>
<tr>
<th>Variety</th>
<th>UGA Platform Scale Weight</th>
<th>On-Board Picker Weight</th>
<th>Significance between PF Scale on JD On-Board System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Yield</td>
<td>Statistical Significance within Platform Scale Alpha = 0.10</td>
<td>Mean Yield</td>
</tr>
<tr>
<td>ST 5471 GLTP</td>
<td>2112 A</td>
<td></td>
<td>2246 A</td>
</tr>
<tr>
<td>DP 1538 B2XF</td>
<td>2082 A</td>
<td></td>
<td>2225 A</td>
</tr>
<tr>
<td>DP 1646 B2XF</td>
<td>2015 A</td>
<td></td>
<td>2213 A</td>
</tr>
<tr>
<td>DP 1840 B3XF</td>
<td>2012 A</td>
<td></td>
<td>2153 A</td>
</tr>
<tr>
<td>ST 5818 GLT</td>
<td>1983 A</td>
<td></td>
<td>2199 A</td>
</tr>
<tr>
<td>PHY 430 W3FE</td>
<td>1945 AB</td>
<td></td>
<td>2088 AB</td>
</tr>
<tr>
<td>CG 3885 B2XF</td>
<td>1930 AB</td>
<td></td>
<td>2085 AB</td>
</tr>
<tr>
<td>DP 1851 B3XF</td>
<td>1923 AB</td>
<td></td>
<td>2093 AB</td>
</tr>
<tr>
<td>PHY 480 W3FE</td>
<td>1888 AB</td>
<td></td>
<td>2067 AB</td>
</tr>
<tr>
<td>ST 6182 GLT</td>
<td>1842 AB</td>
<td></td>
<td>2015 AB</td>
</tr>
<tr>
<td>NG 5711 B3XF</td>
<td>1838 AB</td>
<td></td>
<td>2035 AB</td>
</tr>
<tr>
<td>NG 5007 B2XF</td>
<td>1837 AB</td>
<td></td>
<td>2038 AB</td>
</tr>
<tr>
<td>DG 3605 B2XF</td>
<td>1833 AB</td>
<td></td>
<td>2069 AB</td>
</tr>
<tr>
<td>PHY 440 W3FE</td>
<td>1682 B</td>
<td></td>
<td>1850 B</td>
</tr>
</tbody>
</table>
Results: 2019 Colquitt County Fungicide

\[y = 1.1562x - 277.07 \]

\[R^2 = 0.9597 \]
Results: 2019 Colquitt County Fungicide

<table>
<thead>
<tr>
<th>Treatment</th>
<th>UGA Platform Scale Weight</th>
<th>On-Board Picker Weight</th>
<th>Significance between PF Scale on JD On-Board System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Yield</td>
<td>Statistical Significance within Platform Scale</td>
<td>Mean Yield</td>
</tr>
<tr>
<td>Untreated</td>
<td>4937</td>
<td>A</td>
<td>5452</td>
</tr>
<tr>
<td>Priaxor</td>
<td>4942</td>
<td>A</td>
<td>5456</td>
</tr>
<tr>
<td>Miravus</td>
<td>4930</td>
<td>A</td>
<td>5397</td>
</tr>
</tbody>
</table>
2018-2019 Georgia Data Pooled

Pooled Data

\[y = 1.0991x - 48.775 \]

\[R^2 = 0.9974 \]
2020 AZ, GA, MS, NC, OK, Pooled Data

Field Scale vs. Handler Weight

$y = 0.939x - 3.3243$

$R^2 = 0.9828$
Results: Multiple Sites

MS All Data

- \(y = 0.853x + 376.62 \)
 \(R^2 = 0.8609 \)
- \(y = 0.8594x + 325.4 \)
 \(R^2 = 0.9876 \)
- \(y = 0.9723x + 6.1812 \)
 \(R^2 = 0.9888 \)
- \(y = 0.8727x + 308.81 \)
 \(R^2 = 0.9345 \)
- \(y = 0.9901x - 216.81 \)
 \(R^2 = 0.9786 \)
- \(y = 0.8745x - 14.713 \)
 \(R^2 = 0.9162 \)
Results: Multiple Sites

OK All Data

\[y = 0.8303x + 154.09 \]
\[R^2 = 0.9568 \]

\[y = 0.9142x + 62.297 \]
\[R^2 = 0.9979 \]
Conclusions

• With over 415 different loads collected from multiple states, harvesters and harvester types (CP vs. CS) the John Deere On-Board weighing system had a strong correlation to a calibrated platform scale system ($R^2 = 0.97$).

• In one trials with replicated data, the On-board system was statistically similar to the platform scale in 9 of the 14 treatments.
 – Additionally the On-board system was able to accurately determine significant differences between treatments even if it’s weight predictions were not the same as the platform scale.
Conclusions

• Based on these observations the John Deere On-Board module weighing system can be used as a viable option for determining treatment differences for On-Farm trials.

• However, if the system has not been calibrated and the data require high accuracy, a field scale is suggested.

• The system accuracy can be increased via applying a calibration equation because it has a strong enough correlation to a calibrated platform scale that it can be utilized for accurate weight predictions.
Plastic Contamination

All Extraneous Matter for 2020 Crop

Bales with Ext

- Prep: 996
- Bark: 440,855
- Grass: 12,361
- Seedcoat: 1,050,430
- Oil: 161
- Spindle Twist: 387
- Other: 316
- Plastic: 3,403

(thru 01/21/2021)
Plastic Contamination

2018 Crop vs. 2019 Crop vs. 2020 Crop to date

Samples Called Plastic

- 2018: 3,035
- 2019: 4,913
- 2020: 3,403

Crop Size

- 2018: 17,812,931
- 2019: 19,380,847
- 2020: 13,628,348

(thru 01/21/21)
Plastic Contamination

2019 vs 2020 Crops - Plastic by Office

Bales

Dumas: 602 (2019), 332 (2020)
Memphis: 539 (2019), 430 (2020)
Lubbock: 613 (2019), 556 (2020)
Plastic Contamination

2020 Crop - Plastic Calls by Color

89.5% Attributed to Round Module Wrap

(thru 1/21/2021)
Issues with Plastic Contamination
Foreign Material
Feeder House at the Gin
Identifying Module Damage

Field → Gin Yard → Module Feeder

Jason Ward – NCSU; Bobby Hardin – Texas A&M; Lubbock Gin Lab
Identifying Module Damage

Field → Gin Yard → Module Feeder

Anticipated Outcome – Identification of sources of module damage followed with educational materials to prevent in future.

Jason Ward – NCSU; Bobby Hardin – Texas A&M; Lubbock Gin Lab
Placement and Field Handling of Modules

- Repair wrap tear prior to pickup
- Don’t attempt to slide modules with loader
- Lift the module 12 inches or more above the ground when transporting in the field
Staging Modules in the Field

- Stage only in well drained areas, such as turn-rows
- Space 4-8 inches apart to allow air circulation, drying and loading into module trucks (accounts for tipping angle)
- Align modules to facilitate loading
Transportation to Gin

- When Using Module Truck:
 - Modify bed chain with smooth lugs
 - Modify chain tail wheel lugs to smooth paddle style
 - Don’t run modules into truck headboard
 - Synchronize chain speed with ground speed
 - Operator training is essential
Opening Round Modules

Full-size modules only

No Cut Zone

Inner tail

White Label

Outer Seam

Preferred cut location

Safe Cutting Zone
Acknowledgements and Additional Resources

• We would like to acknowledge all (Las Cruces, Lubbock, Stoneville) of the USDA-ARS Gin Labs for the hard work they are doing to help the gin be able to better remove plastic if it does make it into the module feeder.

• For additional resources on how to reduce plastic contamination during the harvest, transport and ginning processes please go to the following sites:
 – https://www.cotton.org/tech/quality/contamfree.cfm
QUESTIONS?

Follow us on Facebook and Twitter at @GeorgiaPrecisionAg