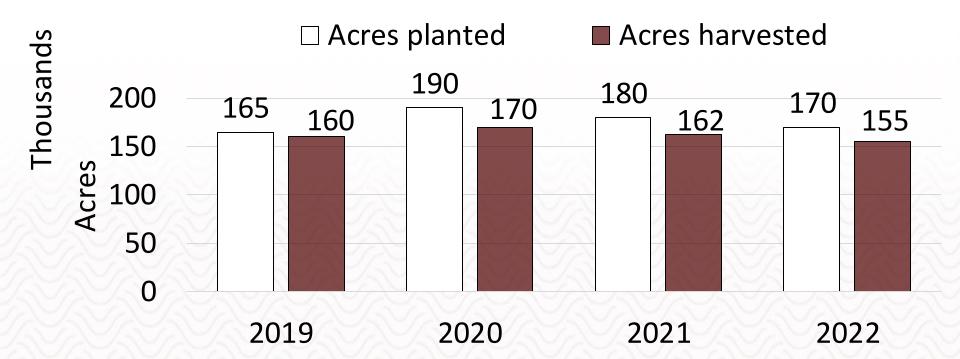

Statewide Peanut Program Update

Emi Kimura AgriLife Extension Service Extension Agronomist and State Extension Peanut Specialist Vernon, TX

US Peanuts


\$ Production

- 1. GA
- 2. TX
- 3. AL/FL
- 4. NC
- 5. SC
- 6. VA
- 7. MI
- 8. NM
- 9. OK

Texas peanuts

- Texas produces 11-12% of US peanut
- Average 92% of planted acres in TX are harvested
- Texas produces all four market types
- Texas produces the highest production of organic peanuts

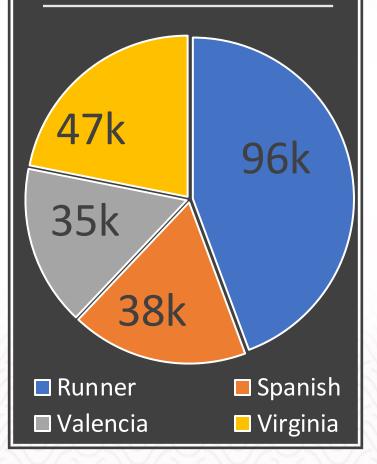
2022 peanut acres

- USDA FSA
 - Certified planted acres report 134,145 ac
 - Failed acres 19,784 ac

Planted and failed peanut acres in Texas as of August 22, 2022						
Southwest	Planted Acres	Failed Acres				
Spanish	35,294	15,640				
Runner	35,393	2717				
Virginia	36,398	1187				
Valencia	27,060	240				
SW Total	134,145	19,784				

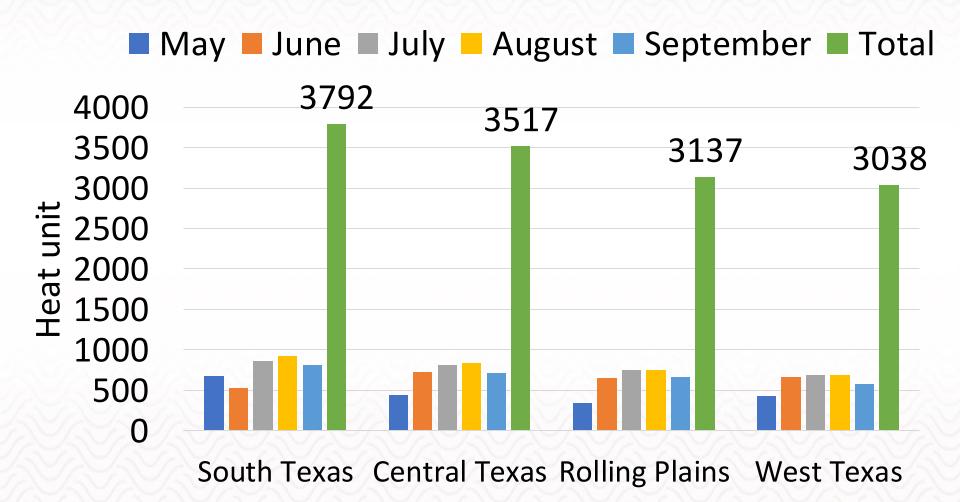
Source: JLA report. USDA-FSA Certified Acreage Report, August 22, 2022

Texas Peanut Program

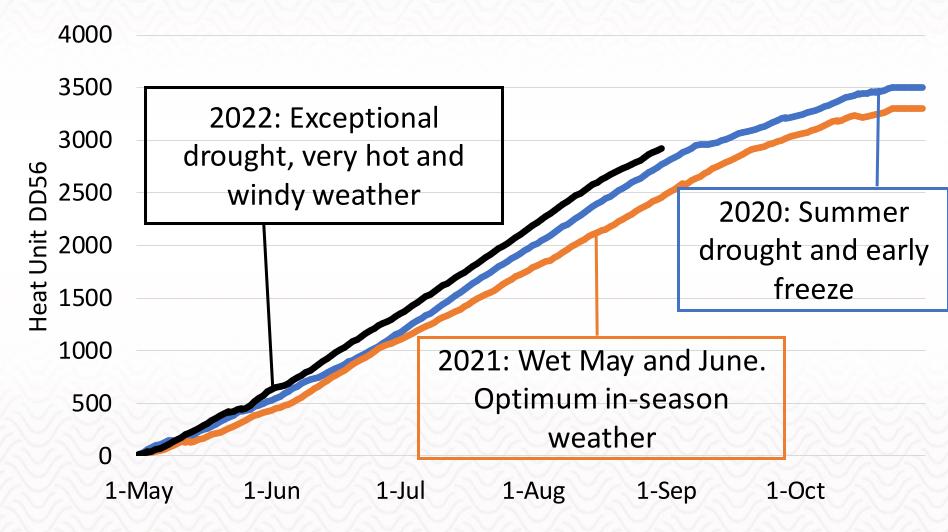

Objectives

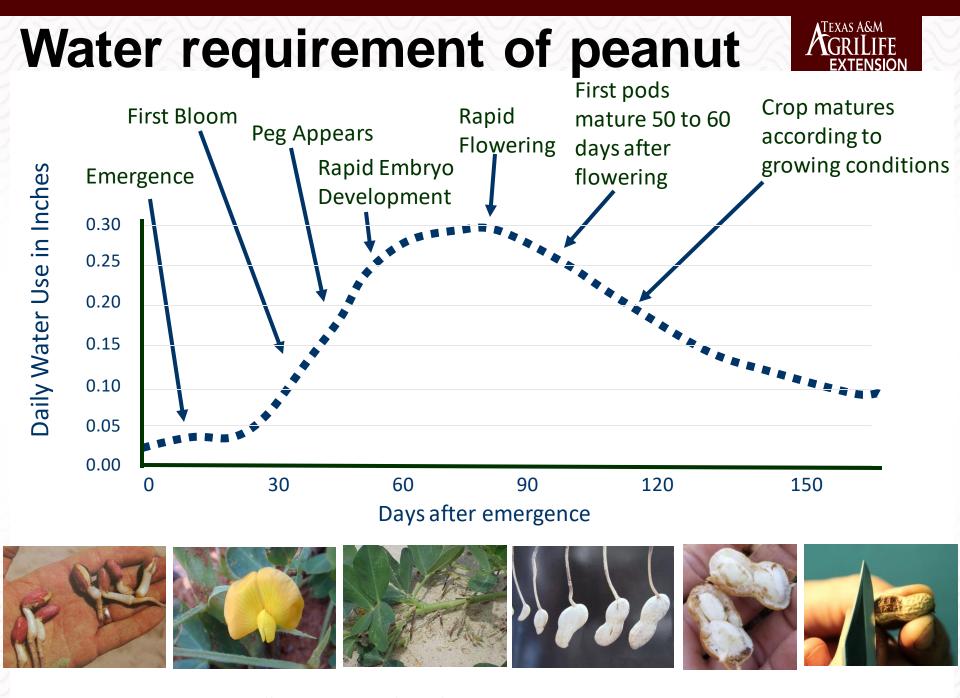
- 1. Variety performance
- 2. Weed Control
- 3. Disease Control
- 4. Soil fertility management
- 5. Soil health management
- 6. Market outlook

Emi Kimura, Katie Lewis, and Johnny Cason

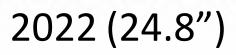


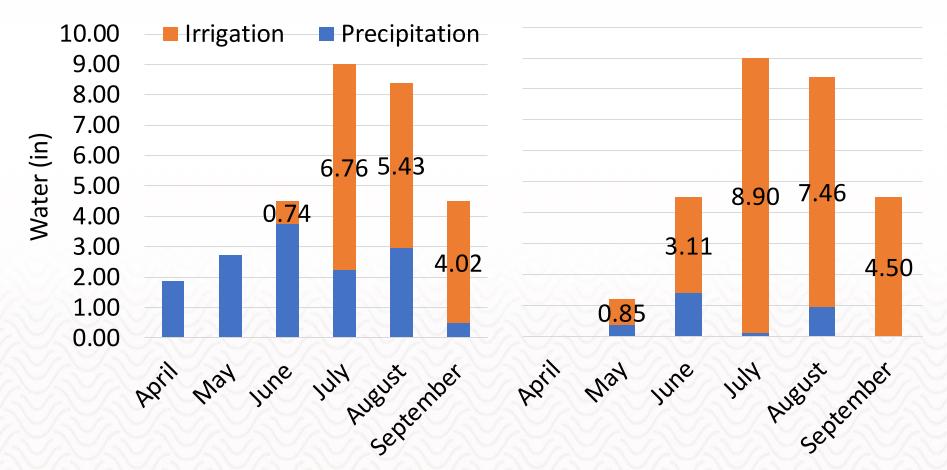
Acres were estimated based on survey results obtained by TPPB




2021 Heat unit

Heat unit accumulation in Seminole, TX




After: Texas Peanut Production Guide: <u>http://soil-testing.tamu.edu/TRMEP/trmscs50.pdf</u>. Slide credit: Dr. Dana Porter

2021 vs 2022 at Seminol, TX

2021 (17")

2021 peanut variety trial summary

	West Texas	Rolling Plains 1	Rolling Plains 2	Central Texas	South Texas
County	Lubbock	Haskell	Collingsworth	Erath	Frio
Plot length	25'	25'	25'	10'	25'
Planting	5/4/2021	5/6/2021	5/13/2021	6/21/2021	6/7/2021
Digging	10/13/2021	9/28/2021	10/11/2021	11/10/2021	11/8/2021
Harvesting	10/19/2021	10/5/2021	10/21/2021	11/18/2021	11/15/2021
DAP	162	145	161	142	154
DD56	3178	3225	3245	3035	4092
Freeze	11/18/2021	11/19/2021	11/19/2021	12/7/2021	N/A
Precipitation Apr-Sep	14.04	19.13	17.57	21.33	22.61
Average yield					
Runner	2509	4743	4132	3920	5040
Spanish	3422	5351	3154	3709	3176
Virginia	2674	5053	3312	4800	4153
Valencia	2725	4119	2104	-	3565

		2021	2-yr	3-yr
RUNNER	Release	Yield	Yield	Yield
ACI 789	AgRes	5610	6119	-
IPG 914	IPG	4739	4056	5027
IPG QR-14	IPG	4696	3506	4448
Lariat	OK	4356	4064	-
IPG 4944	IPG	4155	3933	4986
GA 09B	GA	4147	3694	4846
ARSOK R92-13	OK/NC	3807	_	-
ACI 080	ACI	3650	5100	-
TxL080256-02	TAMU	3493	4734	-
ACI 476	ACI	2953	5016	-
AG18	TAMU	2901	2932	4241
NemaTAM II	TAMU	2614	3167	4444
Tx144370	TAMU	2404	_	-
TxLRu0303	TAMU	2404	2905	-
TxL080243-06	TAMU	2352	4084	-
GA16HO	GA	1864	2487	-
Means		3509	3986	4665

West Texas Runner market type

AG18 and NemaTAMII

AG-18

- A high-yielding
- High grading
- High-oleic runner-type peanut
- Good resistance to Sclerotinia blight (*Sclerotinia minor* (Jagger))
- It exhibits yield and grade attributes equal to or better than Georgia 06G and Georgia 09B

NemaTAMII A high-yielding High oleic fatty acid Runner-type peanut cultivar Resistance to root-knot nematodes Yield equal to or better than Webb Has higher grade potential than Webb Shorter canopy than Webb

State-wide Runner type results

Yellow: Top 2

	W	ТХ	TR	P1	TR	2	СТ	X	ST	X
RUNNER	2021	2-yr	2021	2-yr	2021	2-yr	2021	2-yr	2021	2-yr
ACI 080	3650	5100	4260	3707	3402	3995	-	-	-	-
ACI 476	2953	5016	4421	3764	3459	3889	-	-	-	-
ACI 789	5610	6119	4105	3283	4330	4351	-	-	-	-
AG18	2901	2932	5833	5162	4818	5191	4615	6230	5767	5621
ARSOK R92-13	3807	-	4901	-	4439	4439	-	-	4635	-
GA 09B	4147	3694	4975	4840	3642	4600	2982	5184	5156	5436
GA16HO	1864	2487	4069	4404	4051	5046	3207	5877	4761	4474
IPG 4944	4155	3933	4765	4060	3807	4924	-	-	4802	4924
IPG 914	<mark>4739</mark>	4056	5475	4802	4500	4644	-	-	4740	4786
IPG QR-14	4696	3506	5014	4417	4217	4139	3511	5464	4619	4444
Lariat	4356	4064	5397	4870	4635	5343	4725	6602	5098	4839
NemaTAM II	2614	3167	5114	4907	4173	4423	3897	-	-	-
Tx144370	2404	-	3777	-	3803	3803	4505	-	4552	-
Tamrun OL19										
(TxL080243-06)	2352	4084	4626	-	4408	3830	-	-	4572	4147
Tamrun OL18L										
(TxL080256-02)	3493	4734	5336	-	4317	4291	-	-	5473	4311
TxLRu0303	2404	2905	3825	4561	4112	4112	-	-	6307	5211
Average	3509	3986	4743	4398	4132	4439	3920	5871	5040	4819

Lubbock		2021	2-Yr Avg	3-Yr- Avg
SPANISH	Release	Yield	Yield	Yield
SPan17	TAMU	4365	5166	-
IPG 3628	IPG	3946	3568	4532
OLe	OK	3389	2810	3562
AT 9899		3014	-	-
ACI 236	IPG	2396	2374	3115
Means		3422	3480	3736

West Texas Spanish market type

Lubbock		2021	2-Yr Avg	3-Yr-Avg
VIRGINIA	Release	Yield	Yield	Yield
ACI 442	ACI	3772	3912	4749
TxL090105-07	TAMU	2875	2557	4047
IPG 464	IPG	2805	2980	3947
TxL090105-15	TAMU	2509	2487	3722
Wynne	NC	2439	4411	-
ARSOK/NCEX17	OK/NC	2230	2217	-
Contender	OK	2091	2109	-
Means		2674	2953	4116
				2000
				SVAVA

West Texas Virginia market type

Lubbook	24/22. <i>[</i> 2	0004	O $Vr $ A	$2 \sqrt{r} \sqrt{r}$
Lubbock			2-Yr Avg	
VALENCIA	Release	Yield	Yield	Yield
IPG 1288	IPG	4435	3585	4527
NMSU-5	NMS	3014	2579	2902
NMSU-4	NMS	3006	2500	2807
TxL054529-48	TAMU	2953	-	=
TamVal OL14	TAMU	2901	2095	2423
NMSU-6	NMS	2892	2117	3113
NMSU-3	NMS	2797	2461	-
Valencia 309		2657	-	_
Valencia 310		2587		
NMSU-7	NMS	2509	3176	-
NMSU-8	NMS	2352	2283	-
NMSU-2	NMS	1629	1790	2367
NMSU-1	NMS	1550	1559	2191
Means		2714	2415	2904

West Texas Valencia market type

Texas Peanut Program website

Diesel Nut project

TEXAS A&M GRILIFE RESEARCH EXTENSION

Renewable feedstock with lower carbon intensity

DieselNut

Spanish

July 22, 2022, Wilbarger County

Diesel Nut project

TEXAS A&M GRILIFE RESEARCH EXTENSION

- ↑ Oil content
- ↑ Disease resistant
- BMPs
- Cropping systems

- Budget
 - Market logistics

Renewable feedstock with lower carbon intensity

Obj. 2. Weed Control

Pete Dotray, James Grichar, and Josh McGinty

- Season-long control of Palmer amaranth
- Peanut weed control using Anthem Flex
- Herbicide programs using Persuit
- Screening peanut cultivars for herbicide tolerance
- weed control with cadre when using various adjuvants
- will adjuvants improve the activity of soil-applied herbicides?
- peanut response to paraquat in the southwest growing region

Season-long Control of Palmer Amaranth (48 DA MPOS)

Orange bars are statistically same as the highest value PRE Crack **EPOS MPOS** at P = 0.05 Prowl/DM/*/ */*/ */*/ DM/24DB/ */*/ */*/ Prowl/Valor/DM/ DM/24DB/ GM/Zidua/ */*/*/ */*/ */*/ Prowl/*/*/ */*/ Cadre/24DB/ */*/ Prowl/*/*/ */*/ AF/24DB/ */*/ Prowl/*/*/ GM/Zidua/ */*/ */*/ */*/ Prowl/Warrant/*/ */*/ */*/ Prowl/Outlook/*/ */*/ */*/ */*/ Prowl/AF/*/ */*/ */*/ */*/ Prowl/Pursuit/*/ */*/ */*/ */*/ */*/ Prowl/DM/*/ */*/ */*/ Prowl/Valor/*/ */*/ */*/ */*/ Prowl/*/*/ */*/ */*/ */*/ */*/*/ */*/ */*/ */*/ 0

DM: Dual Magnum, GM: Gramoxone, AF: Anthem Flex

20 40 60 80 100 120 Palmer amaranth control (%) Source: McGinty and Grichar

Troublesome weeds in Texas peanuts

Rolling Plains

• Palmer amaranth, nutsedge (purple and yellow)

West Texas

• Palmer amaranth, nutsedge, morning glory

Central Texas

• Palmer amaranth, purslane, Eclipta

South Texas

Smellmelon, Palmer amaranth, Texas panicum, crabgrass

Obj. 3. Disease control

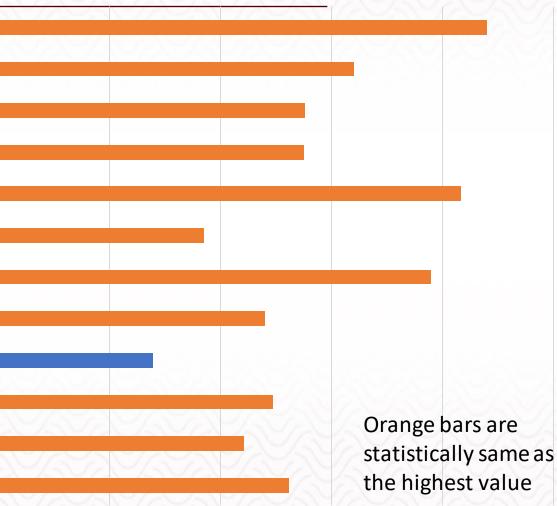
Cecilia Monclova and Ken Obasa

Fungicide timings and combination to control peanut pod rot

ova et a

Obj. 3. Disease control - Treatments

Trt	Chemical	Code	45 DAP	60 DAP	75 DAP	90 DAP
1	Ridomil	Rd45 +	Х			
	Lucento	Lu60		Х		
2	Ridomil	Rd45	Х			
3	Abound	Ab60/90+		Х		Х
	Lucento	Lu75			Х	
4	Abound	Ab60/90+		Х		Х
	Propulse	Pr75			Х	
5	Ridomil	Rd45 +	Х			
	Abound	Ab60/90		Х		Х
6	Abound	Ab60/90		Х		Х
7	Lucento	Lu60		Х		
8	Propulse	Pr60/90		Х		Х
9	Abound	Ab75			Х	
10	Propulse	Pr75			Х	
11	Untreated	U	-	-	-	-
12	Disease-based spray	Dbs	-	-	-	-

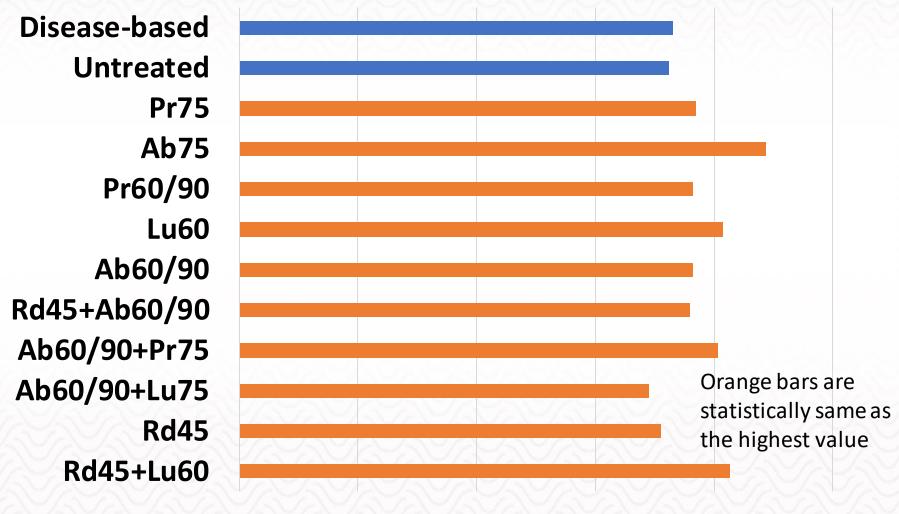


Incidence - %

Disease-based Untreated **Pr75 Ab75** Pr60/90 Lu60 Ab60/90 Rd45+Ab60/90 Ab60/90+Pr75 Ab60/90+Lu75 **Rd45** Rd45+Lu60

0

2

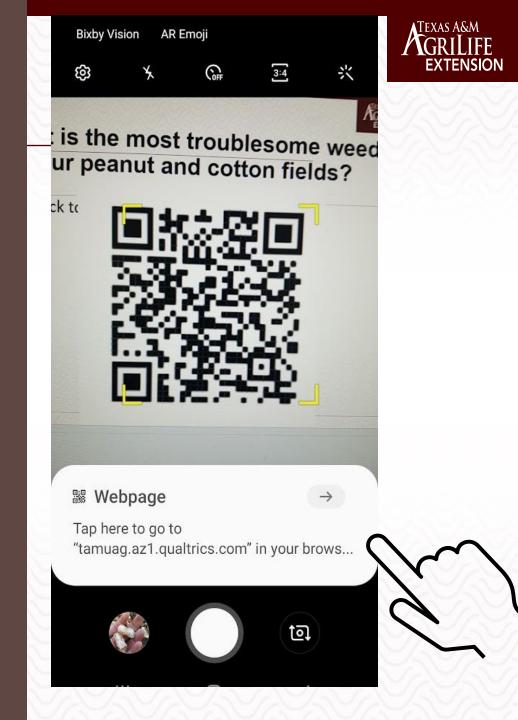


4

6 8 10 Source: Monclova et al.

Yield – Ib/ac

0 1,000 2,000 3,000 4,000 5,000 Source: Monclova et al.


Troublesome diseases in Texas

- **Rolling Plains**
 - Podrot and leafspot
- West Texas
 - Podrot
- **Central Texas**
 - Phythium pod rot, Southern blight, Nematode, Rhizoctonia limbrot

South Texas

Leafspot, *Phythium* and *Rhizoctonia* pod rot, southern blight

What are the most troublesome weedsin your or your client's peanut fields?

Obj. 5. Soil health management & Organic production

Paul DeLaune and Katie Lewis

Leah Ellman-Stortz and Terry Gentry – Texas A&M University

Southern Sustainable Agriculture Research and Education

exa

Organic Agriculture in Texas

- Texas ranks only 17th in the number of organic crop and livestock operations, 6th in total value of organic agricultural products sold and 9th in total organic acreage.
- Texas grows over 90% of organic cotton, 95% of organic peanuts, and 41% of organic rice in the US.
- Continuous organic cotton systems are common as a cover crop has been allowed to be considered as a rotation.

 Rye cover crops planted at low seeding rates (15 lb ac⁻¹) are commonly terminated via tillage in late winter during vegetative stage, 2-3 months prior to cotton planting, to conserve soil moisture.

Slide credit: DeLaune et al.

Cotton and Peanut Rotation

- Peanut is a common rotational crop with cotton under irrigated conditions.
- Peanut producers have expressed interest in soil health promoting practices (conservation tillage and cover crops).
- Digging peanuts

is a destructive process, potentially limiting the benefits of conservation tillage alone.

Organic Challenges and Cover Crops

- Weed control and nitrogen (N) management are two main challenges.
- Cover crops offer a potential alternative or companion to mechanical tillage for weed control and can enhance soil fertility, soil organic matter, and soil structure.
- In semi-arid regions of Texas, the impact of cover crops on soil moisture availability is a major concern.
- Questions arise about species selection, seeding rate, and termination timing – which can subsequently affect weed control and nutrient cycling.

Objective

 The objective of this study was to identify management practices that enhance soil function in both conventional and organic agriculture and share successful practices between these systems.

CC

Study Location

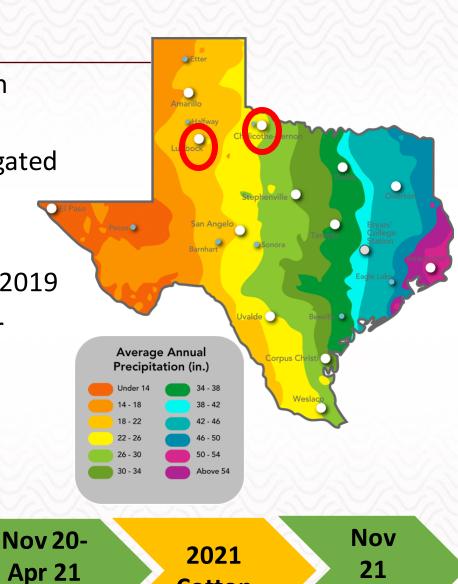
- Texas A&M AgriLife Research Extension Centers in Lubbock and Vernon
- Lubbock Olton clay loam, furrow irrigated
- Vernon Miles loamy fine sand, pivot irrigated
- Study initiated with cotton planting in 2019

2020

Peanut

CC

- Initial cover crop planting in November 2019.
- Cover crops terminated April 2020
- Peanuts planted May 2020


Nov 19-

Apr 20

CC

2019

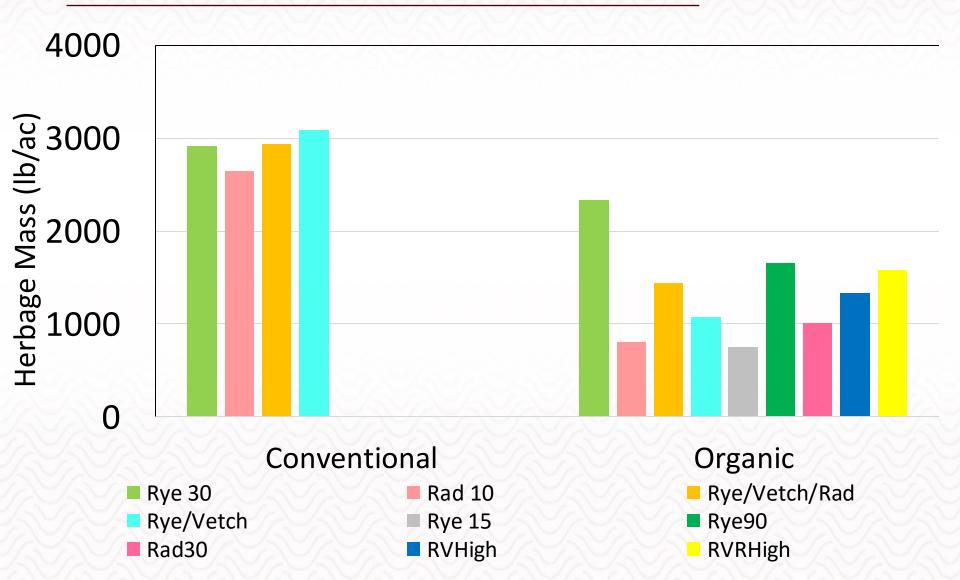
Cotton

Cotton

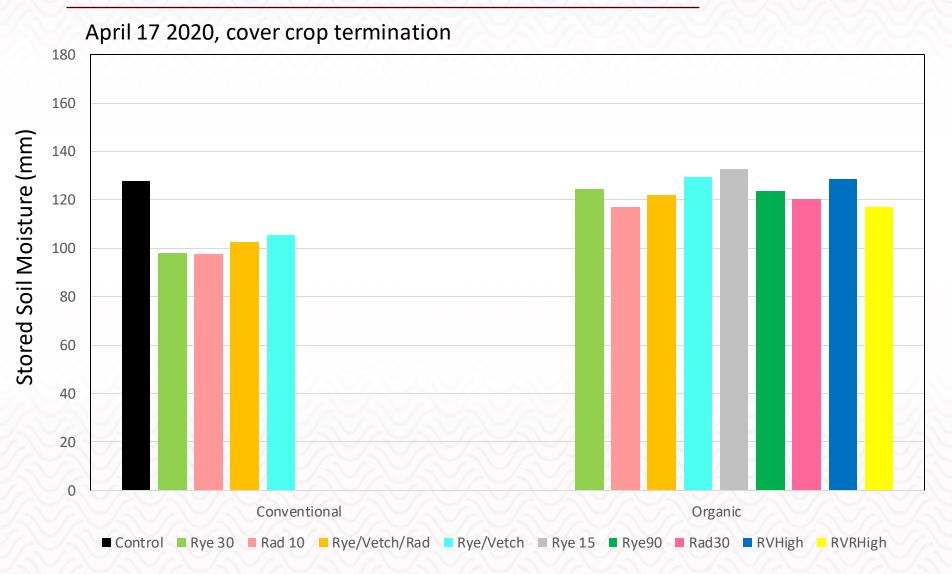
Treatments

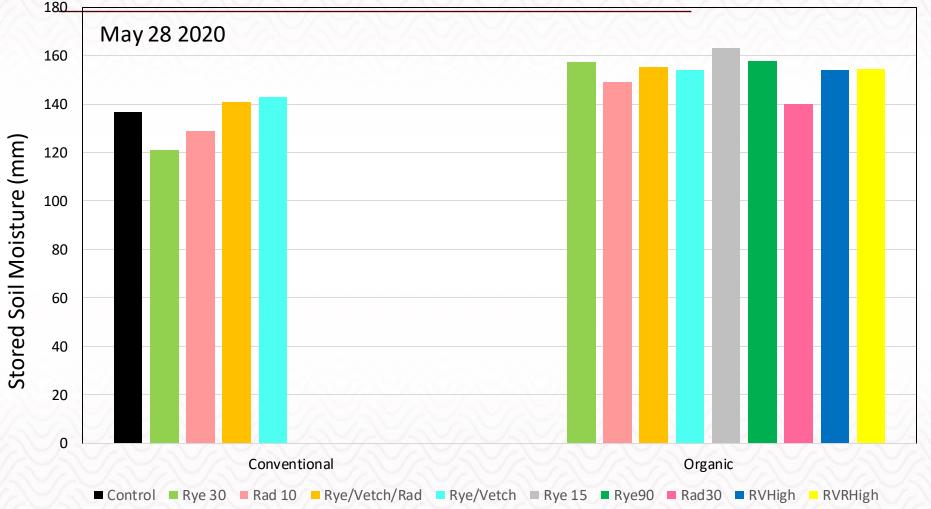
Conventional	Organic
Control (no cover crop)	15 lb/ac rye ("control")
30 lb/ac Rye	30 lb/ac Rye
10 lb/ac Radish	10 lb/ac Radish
25 lb/ac Rye + 5 lb/ac hairy vetch	25 lb/ac Rye + 5 lb/ac hairy vetch
25 lb/ac Rye + 3 lb/ac vetch + 2 lb/ac radish	25 lb/ac Rye + 3 lb/ac vetch + 2 lb/ac radish
	90 lb/ac Rye
	30 lb/ac Radish
	75 lb/ac Rye + 15 lb/ac vetch
	75 lb/ac Rye + 9 lb/ac vetch + 6 lb/ac radish

Split-plot, RCBD 4 replications

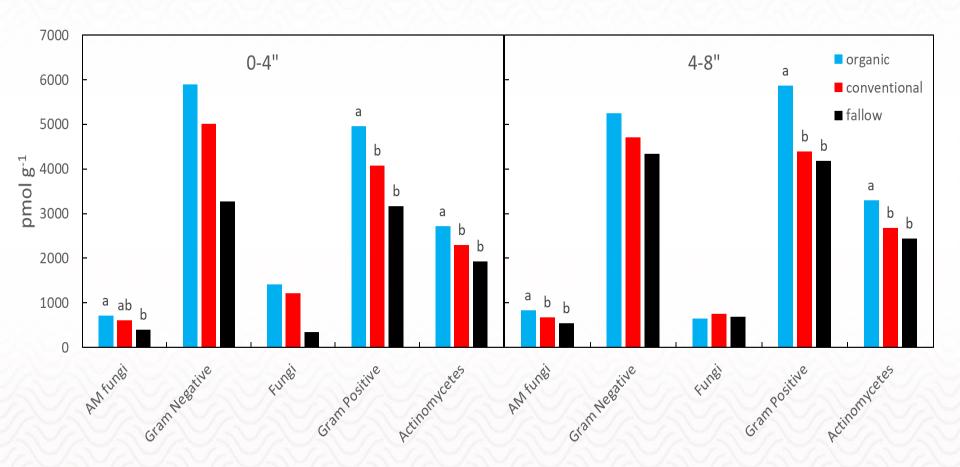


Cover crop termination

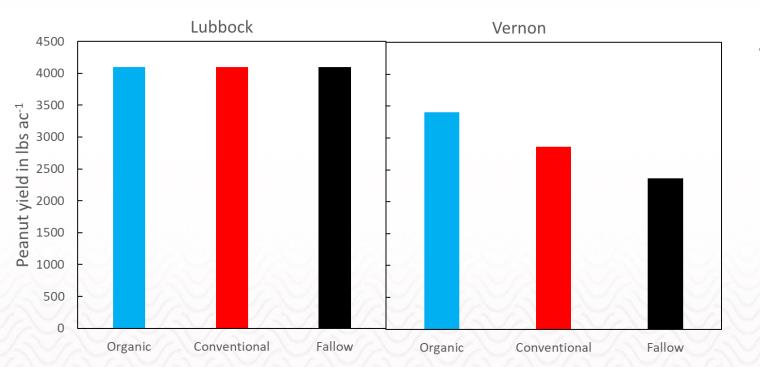

Cover Crop Herbage Mass



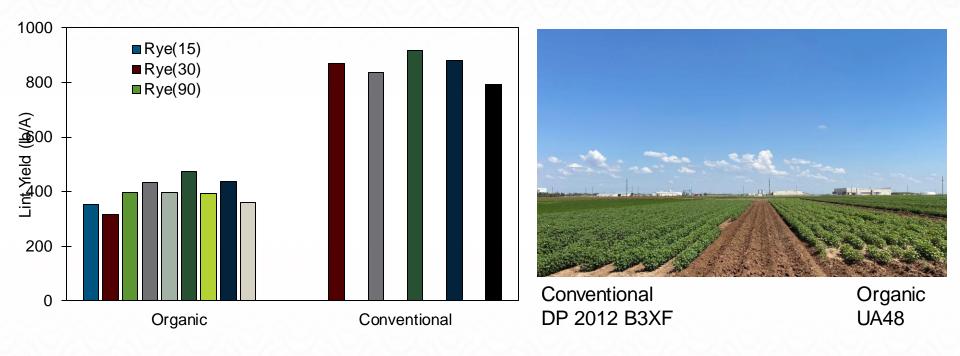
Soil Moisture 0-24 inches



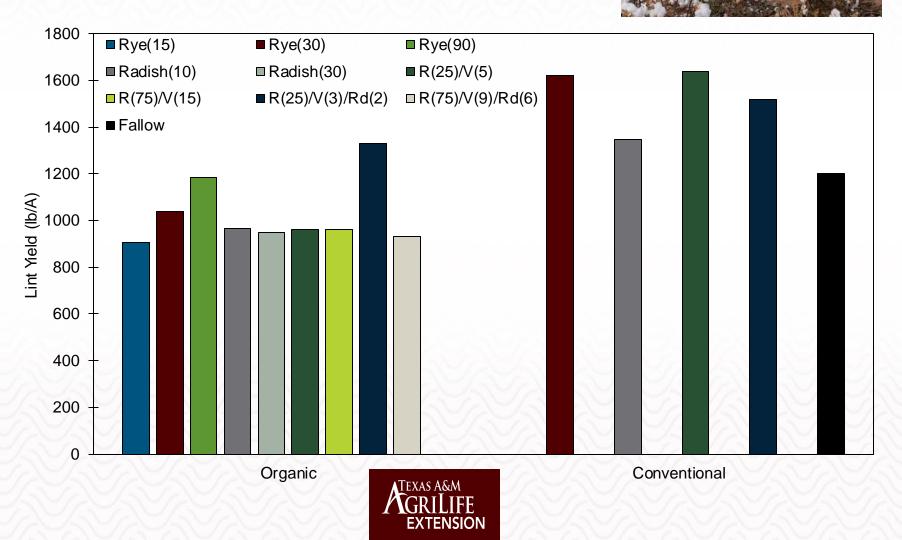
Soil Moisture 0-24 inches



Vernon: PLFAs


2020 Peanut yields

 No significant difference in yield according to management or cover crop selection.



Cotton yield – Lubbock (2021)

Cotton yield – Vernon (2021)

Conclusions

Cover crop production was similar among treatments and seeding rates.

Under conventional management, stored soil moisture was lower for cover crop treatments but recovered by early season.

Stored soil moisture was similar among organic treatments, including varying seeding rates and termination timing.

PLFA indicated improved trends for microbial activity in organic system at Vernon, hypothesized due to recent compost application.

No yield loss due to organic or conservation management for peanuts. Organic cotton yield was reduced compared to conventional likely due to variety selection.

THANK YOU!

TEXAS A&M GRILIFE RESEARCH | EXTENSION

Emi Kimura <u>Emi.kimura@ag.tamu.edu</u> 940-647-3910

