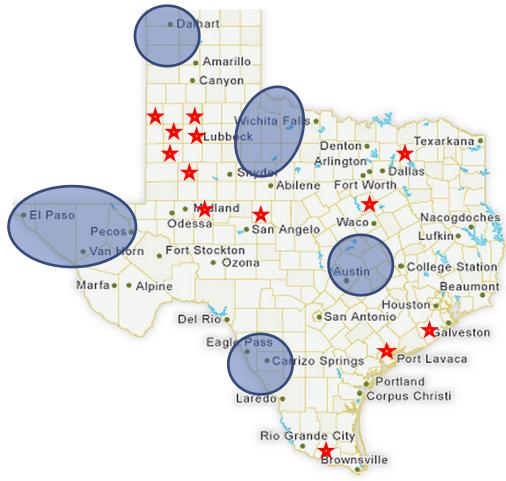

Texas IPM Program Update

David Kerns
Department of Entomology
Texas A&M University
College Station, TX

West Texas Agricultural Chemicals Institute Conference September 13, 2017

13 IPM Agents/6 Program Specialists

Mostly MS as Last Degree Currently 11 IPM Agents with less that 5 years of service (58%)



Where are we?

13 IPM Agents

Focus: Agriculture

- Insect pest
- Plant pathogens
- Weed control
- Fertility
- Crop management

Flexibility

IPM Agents

South Plains

- Kerry Siders
 - Hockley, Cochran, Lamb
- Blayne Reed
 - Hale, Swisher, Floyd
- Tommy Doederlein
 - Lynn and Dawson
- Dr. Katelyn Keisheimer
 - Lubbock, Crosby
- Tyler Mays
 - Terry, Yoakum, Gaines
- John David Gonzales
 - Bailey, Parmer, Castro

Central and South Texas

- Xandra Morris
 - Hill, McLennan
- Dr. David Drake
 - Commerce A&M, Hunt, Collins
- Kate Harrell
 - Wharton, Matagorda, Jackson
- Stephen Biles
 - Calhoun, Victoria, Refugio
- Danielle Sekula
 - Cameron, Hidalgo, Willacy

So. Rolling Plains and West Texas

- Brad Easterling
 - Glasscock, Reagan, Upton
- Joel Webb
 - Tom Green, Runnels

Where are we?

6 Program Specialists

Focus: Urban, School IPM, Pecans,

Nursery & Greenhouse

Extension Program Specialists

Statewide Responsibilities

- Bill Ree
 - College Station
 - Pecan IPM
- Erfan Vafaie
 - Tyler/Overton
 - Greenhouse/Commercial Ornamental IPM
- Janet Hurley
 - Dallas Area
 - School IPM

Metropolitan Areas

- Wizzie Brown
 - Austin Area
 - Urban/Landscape IPM
- Molly Keck
 - San Antonio Area
 - Urban/Landscape IPM
- Dr. Paul Nester
 - Houston Area
 - Urban IPM\Invasive ants

What do we do?

- Sampling soil to determine proper fertility needs
- Sampling soil to ascertain nematode risk
- Planting variety trials
- Scouting for insect, disease and weeds
- Monitoring ET and helping with irrigation timing
- Plant growth regulator and harvest aid timing
- Monitoring general crop growth, development and condition
- Conducting pesticide efficacy tests to aid in decision making

Direction

Stakeholder Driven Objectives

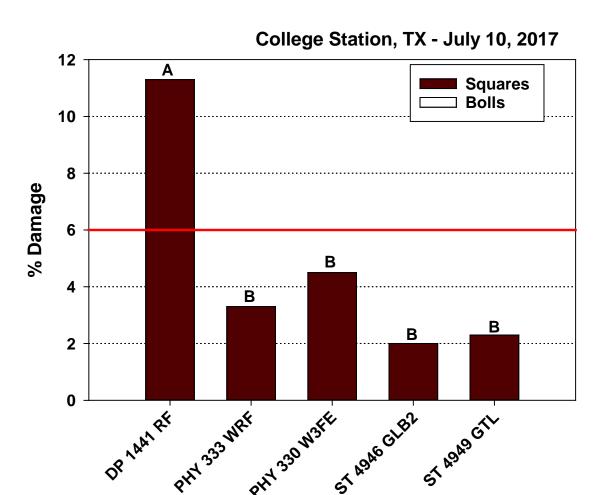
- Each unit has a Steering Committee that meets 2 or more times per year
- The IPM Agent or Program Specialist works with the Committee to:
 - <u>Identify</u> critical issues
 - Attract the Resources of TAMU and partners
 - Develop a plan to address issues
 - Address the issue with <u>unbiased</u> <u>solutions</u> and <u>deliver solutions</u> to stakeholders

Clientele Oriented Research

- Effective Extension is research driven
- Strong partnerships
 - Extension Specialists
 - Researchers
 - Other universities
 - Commodity organizations
 - Consultants
 - Industry

Develop synergistic relationships while maintaining objectivity

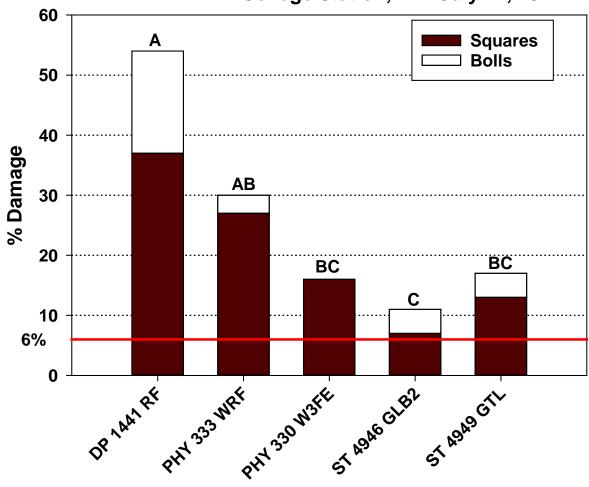
Unexpected Injury in Bt Cotton



Current Bt Technologies

Company	1 st generation (single gene)	2 nd generation (dual gene)	3 rd generation (multi-gene)
Monsanto	Bollgard (Cry1Ac)	Bollgard 2 (Cry1Ac+Cry2Ab)	Bollgard 3 (Cry1Ac+Cry2Ab+Vip3A)
Dow		WideStrike (Cry1Ac+Cry1F)	WideStrike 3 (Cry1Ac+Cry1F+Vip3A)
Bayer		TwinLink (Cry1Ab+Cry2Ae)	TwinLink Plus (Cry1Ab+Cry2Ae+Vip3A)

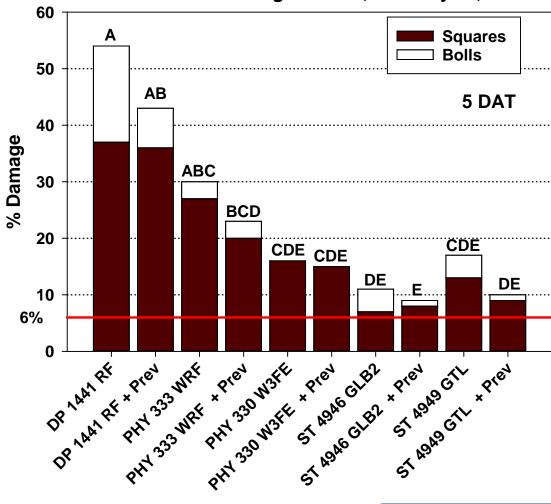
T Cry1Ac 1 1 Cry2A Cry1F


T Vip3A

Difference in Fruit Injury

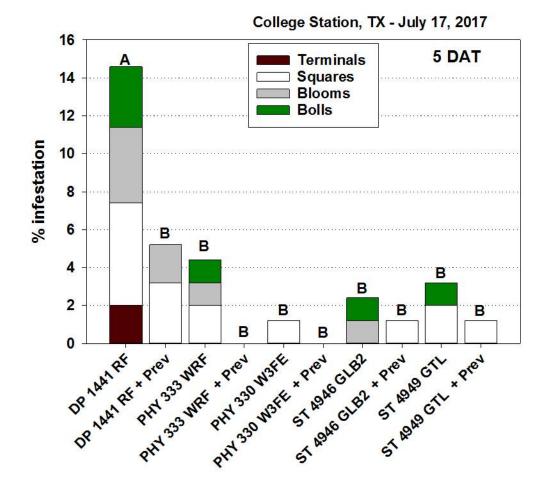
College Station, TX - July 17, 2017

Difference in Fruit Injury



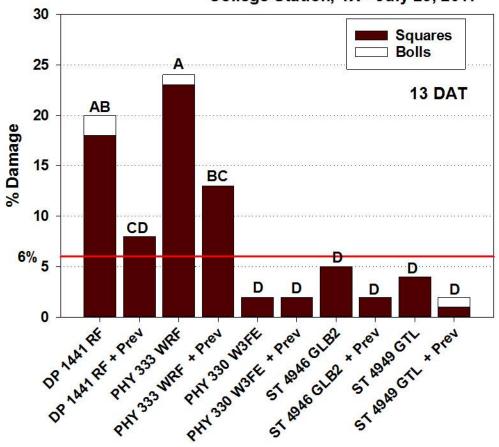
College Station, TX - July 25, 2017 30 **Squares Bolls** 20 % Damage 15 10 6% 5 В 0 DP 14A1 RF PHY 333 WRF PHY 330 W3FE ST A9A6 GLED ST A9A9 ETL

Difference in Fruit Injury

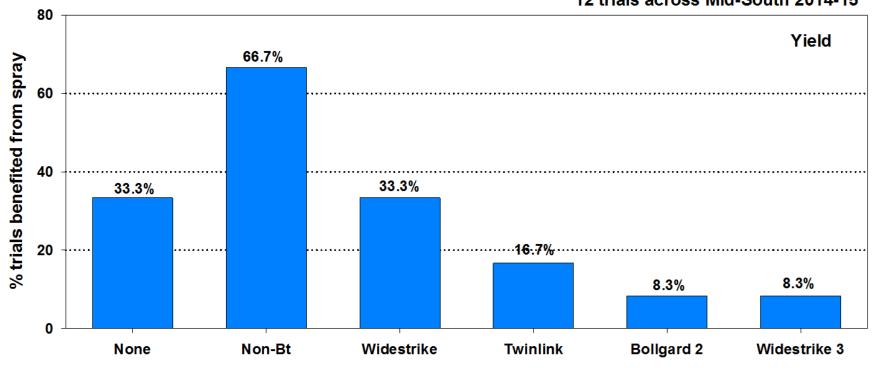


College Station, TX - July 17, 2017

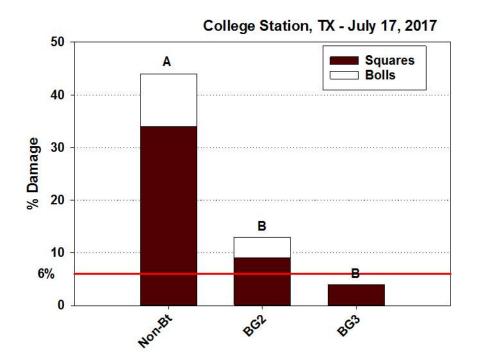
Spray vs No Spray

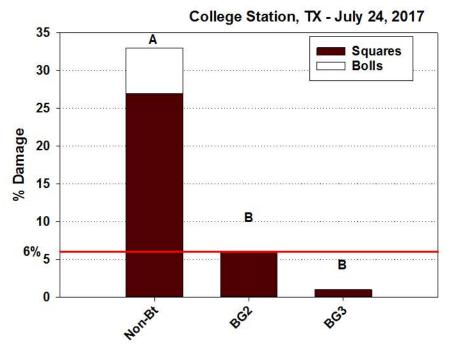


Spray vs No Spray

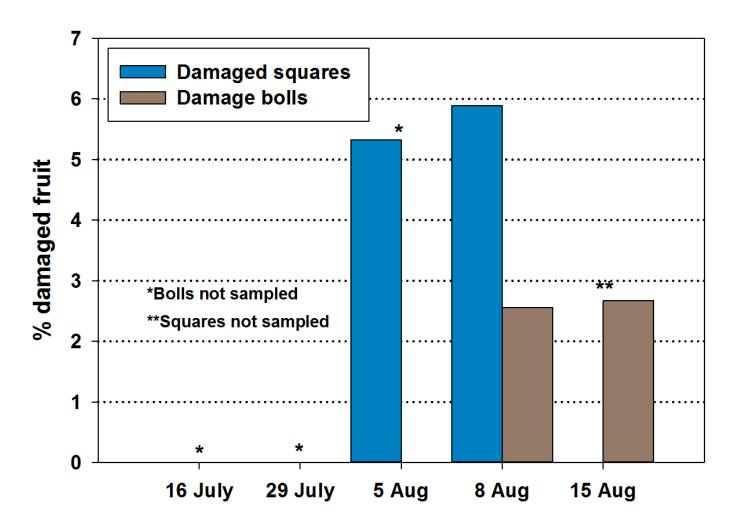


Spray vs No Spray

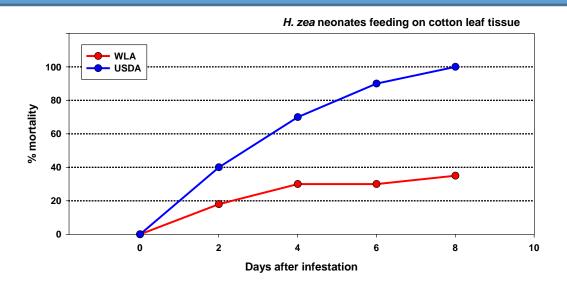




Percentage Sites with >5% Yield Differences



Bollgard 3


Injury to WideStrike 3

F1 Bioassay of Field Collected Larvae on WS3 Cotton

Near San Angelo – TwinLink Estimated 93% Loss

Ranking Current Bt Technologies

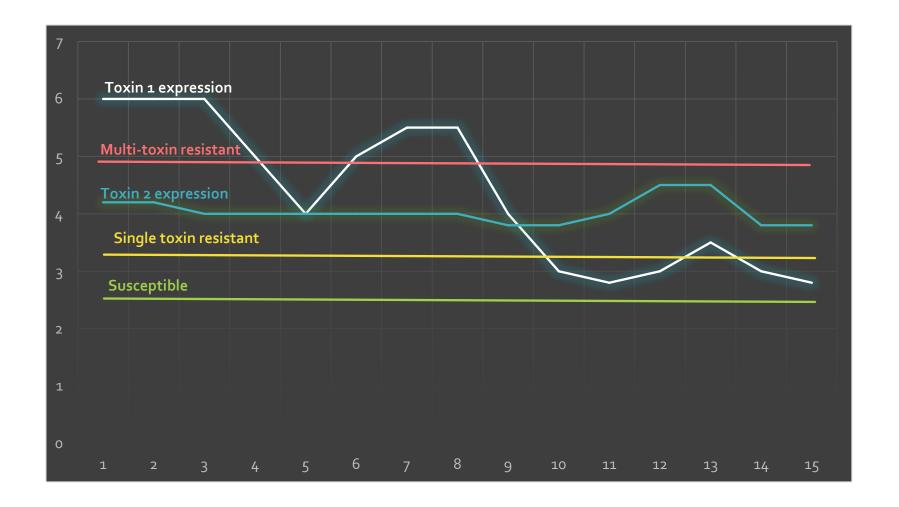
1st Gen.

Good

BG WS

2nd Gen.

TwinLink - 2014


3rd Gen.

Widestrike 3
TwinLink +
Bollgard 3

Why do we sometimes see unexpected injury in Bt cotton from bollworms?

- Field data demonstrates ALL current Bt cottons can experience unacceptable injury
 - Obvious differences in efficacy among technologies
- Possible contributing factors in Bt efficacy
 - Varietal expression
 - Plant maturity and health
 - Environmental conditions
 - Where eggs are laid
 - Resistance to Bt
 - High pest pressure

Bt Toxin Expression Over Time

Insect strain	Generation	LC ₅₀ (95% CL) (µg/g)	Resistance ratio
USDA-SS	1	0.265 (0.207, 0.339)	1
WB-LA	G1	1.340 (1.038, 1.738)	5.1
BR-LA	G2	> 10	> 37.7
AD-LA	G2	> 10	> 37.7
SV-MS	G1	> 10	> 37.7
SD-MS	G2	6.760 (3.856, 15.443)	25.5
MT-AR	G2	1.291 (1.024, 1.655)	4.9

Susceptibility of CBW to Cry1Ac Protein in Diet-incorporated - 2015

Insect strain	LC ₅₀ -1 (95% CL) (μg/cm ²)	RR-1	LC ₅₀ -2 (95% CL) (μg/cm ²)	RR-2
BZ-SS	0.027 (0.023, 0.031)	1.0	0.015 (0.012, 0.017)	1.0
LA-AD	0.942 (0.575, 1.611)	34.9 *	0.412 (0.270, 0.620)	27.5 *
TN-JN	0.202 (0.096, 0.394)	7.5	0.086 (0.038, 0.163)	5.7
TN-BG2	0.237 (0.193, 0.292)	8.8	0.143 (0.109, 0.185)	9.5
MS-LD	1.341 (0.967, 1.930)	49.7 *	0.725 (0.534, 1.004)	48.3 *
AR-TK	0.057 (0.041, 0.075)	2.1	0.024 (0.013, 0.038)	1.6

Susceptibility of CBW to Cry1Ac Protein in Diet-Overlay - 2016

Insect strain	LC ₅₀ -1 (95% CL) (μg/cm ²)	LC ₅₀ -2 (95% CL) (μg/cm ²)
BZ-SS	> 4.00	> 4.00
LA-AD	> 4.00	> 4.00
TN-JN	> 4.00	> 4.00
TN-BG2	> 4.00	> 4.00
MS-LD	> 4.00	> 4.00
AR-TK	> 4.00	> 4.00

Susceptibility of CBW to Cry1F Protein in Diet-Overlay - 2016

Insect strain	LC ₅₀ -1 (95% CL) (μg/cm ²)	RR-1	LC ₅₀ -2 (95% CL) (μg/cm ²)	RR-2
BZ-SS	0.13 (0.10, 0.17)	1.0	0.09 (0.07, 0.11)	1.0
LA-AD	6.03 (4.32, 8.59)	46.4 *	3.21 (2.19, 4.59)	35.7 *
TN-JN	17.34 (12.42, 26.71)	133.4*	12.00 (9.00, 16.55)	133.3*
TN-BG2	1.78 (1.35, 2.42)	13.7 *	0.36 (0.30, 0.43)	4.0
MS-LD	1.36 (0.94, 2.06)	10.5 *	0.77 (0.56, 1.07)	8.6
AR-TK	0.31 (0.21, 0.47)	2.4	0.09 (0.06, 0.12)	1.0

Susceptibility of CBW to Cry2Ab2 Protein in Diet-Overlay - 2016

Insect strain	LC ₅₀ -1 (95% CL) (μg/cm ²)	RR-1	LC ₅₀ -2 (95% CL) (μg/cm ²)	RR-2
BZ-SS	0.97 (0.85, 1.11)	1.0	0.82 (0.69, 0.97)	1.0
LA-AD	0.19 (0.15, 0.24)	-5.1	0.12 (0.10, 0.14)	-6.8
TN-JN	0.16 (0.12, 0.21)	-6.1	0.13 (0.09, 0.17)	-6.3
TN-BG2	0.18 (0.13, 0.23)	-5.4	0.12 (0.09, 0.16)	-6.8
MS-LD	0.14 (0.12, 0.16)	-6.9	0.11 (0.09, 0.12)	-7.5
AR-TK	0.17 (0.13, 0.23)	-5.7	0.13 (0.10, 0.17)	-6.3

Susceptibility of CBW to Vip3a Protein in Diet-Overlay - 2016

What about 2017?

- We are currently testing populations
 - Texas, Louisiana, Arkansas,
 Mississippi, Tennessee
- Preliminary results suggest widespread resistance
 - Cry1Ac
 - Cry2Ab2
- Vip3A appears highly toxic

Conclusions

- No Bt cotton variety or technology is immune to unacceptable bollworm injury.
- Scout your cotton.
- Give the technology a chance to work.
- Based control decision on fruit injury with the presence of live larvae.
- Fruit injury threshold ranges from 3.54-10.33% injured fruit depending on price of cotton and crop yield expectation; **6% damage is a good middle of the road threshold.**
- Do not let the worms get big and into the bolls.
- Select the right insecticide.
 - Pyrethoids are inexpensive but resistance is an issue in many area.
 - Pyrethroids are weak on FAW and hard on beneficials.
 - Prevathon (soft) or Besiege (hard) are highly effective and usually provide about 3
 weeks control.
 - Blackhawk is effective, soft of beneficials but has a short residual.
 - Pyrethroids and to a lesser extent Prevathon/Besiege are not as efficacious on deep canopy larvae.

Contact Information

David Kerns

Texas A&M University

College Station, TX

Cell: 318-439-4844

Email: DLKerns@tamu.edu

