
Seth Byrd Extension Cotton Specialist

Oklahoma State University

Cotton and Agronomy Overview

Water Supply – Vegetative

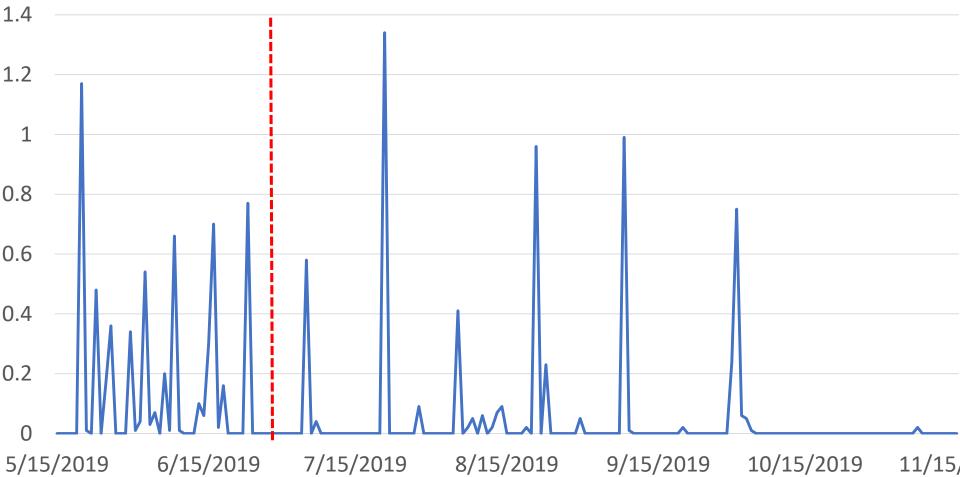
- Vegetative shortage/excess: inhibited root growth and soil profile access, can result in reduced uptake of water and nutrients
- Vegetative optimal: adequate water to prevent water stress, allow for root development and timely progress to squaring

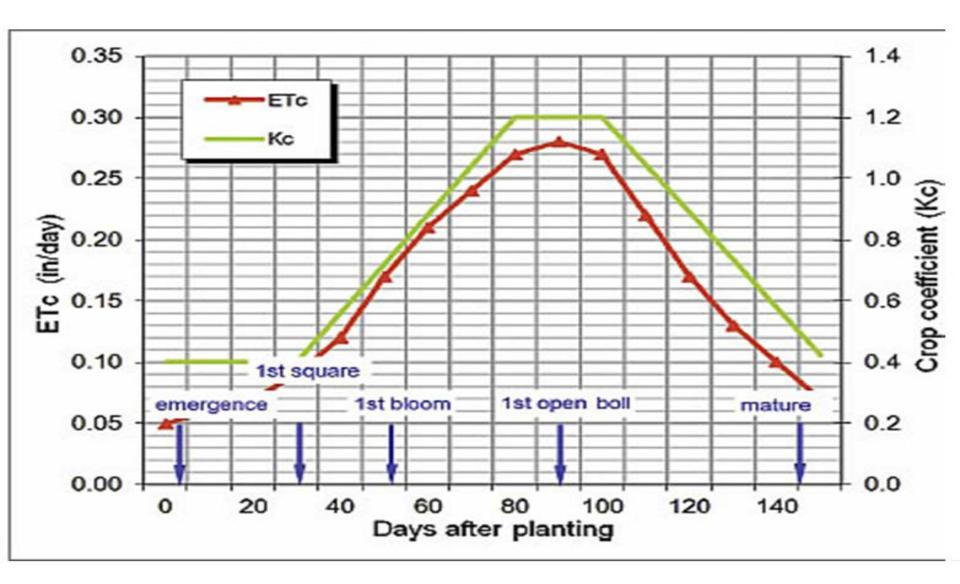
Water Supply - Squaring

- Squaring shortage: reduction in square retention and development, can delay onset of flowering
- Squaring excess: increased square formation and aboveground vegetative growth; too much plant/fruit for plant (roots) to support
- Squaring optimal: some square shed prior to first bloom is acceptable, <u>></u> 80% retention, higher with later planting dates

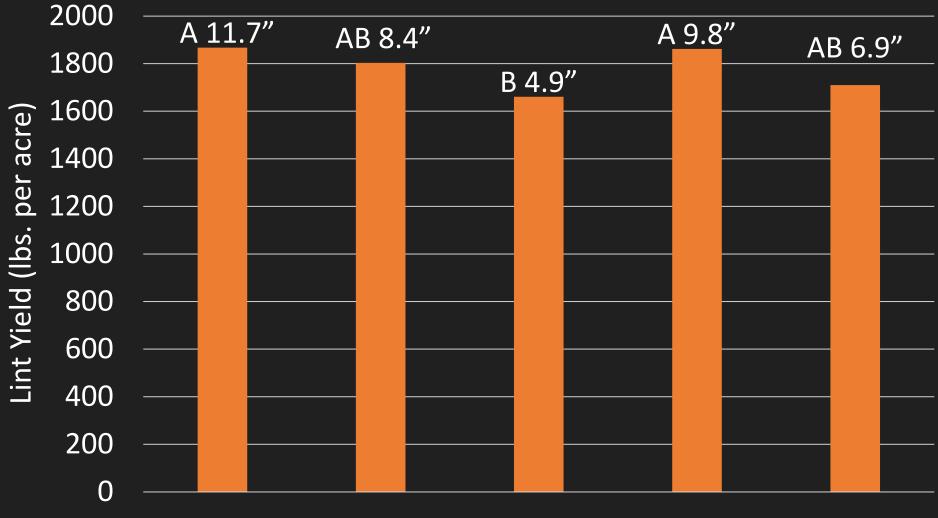
Water Supply - Flowering

- Flowering shortage: fruit shed, delayed fruit development and maturity, reduced yield
- Flowering excess: excess vegetative growth, delayed maturity (heat unit accumulation), immature fiber
- Flower optimal: matches bell shaped curve to meet demand but avoid stress and excess




Current Irrigation Research

- Identified that ET was likely being overestimated
- Cotton planted May 15th; irrigation initiated on July 10th (mid-squaring), terminated Sept. 6th
- Schedules utilized in 2019:
- 90% of ET
- 63% of ET
- 36% of ET
- 90% of ET during squaring, 63% during flowering
- 36% of ET during squaring, 63% during flowering
- Seasonal rainfall = 11.5"

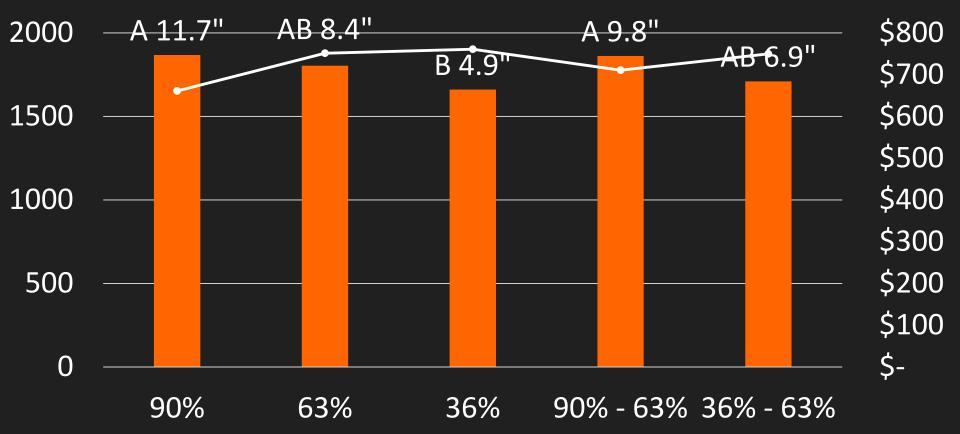

Goodwell Rainfall 2019

Goodwell Drip Irrigation Trial Water Received **90% (11.7") 63% (8.4**") **36% (4.9")** ■ 90% - 63% (9.8") ■ 36% - 63% (6.9") 3.5 3 2.5 Inches 2 1.5 1 0.5 0

2019 Goodwell Drip Trial Lint Yield

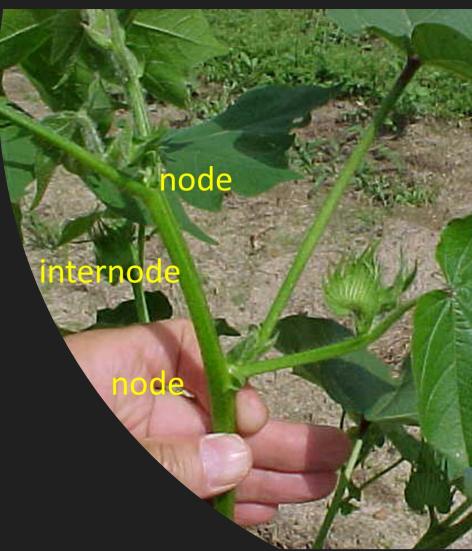
 90%
 63%
 36%
 90% - 63%
 36% - 63%

 Irrigation Treatment (% of Estimated ET)


2019 Goodwell Drip Irrigation Trial Quality and Value

Variety	Mic	Staple	Uniformity (%)	Strength (g/tex)	Loan Value (cents/lb)	Return (\$/acre)
PHY 210 W3FE	3.3 a	37.1	83.3 a	31.6 a	49.12 a	\$756
PHY 320 W3FE	3.3 a	37.1	83.3 a	30.5 bc	45.25 bc	\$723
PHY 350 W3FE	3.4 a	37.1	82.0 b	29.8 c	46.47 ab	\$739
PHY 400 W3FE	3.1 b	37.1	81.6 b	30.7 b	43.33 c	\$689

Irrigation


90%	2.8 c	37.8 a	82.2	29.6 b	40.21 c	\$661
63%	3.3 b	37.4 ab	82.8	30.7 a	46.88 b	\$751
36%	3.8 a	36.5 c	82.8	31.1 a	51.36 a	\$761
90% - 63%	3.0 c	37.4 a	82.8	31.2 a	42.90 c	\$711
36% - 63%	3.5 b	36.8 bc	82.2	30.6 a	48.85 ab	\$750
CV	13.4410	2.1693	1.5083	3.8078	12.3402	14.2355

2019 Goodwell Drip Irrigation Trial Lint Yield and Return Value

How do PGRs work?

- How do plants and animals grow?
 - Cell expansion and division
- PGRs reduce the synthesis of Gibberellic Acid (GA)
- GA is responsible for cell expansion
- PGRs inhibit cell expansion = shorten internodes

Situations Where Rank Growth can Occur

- Late maturing variety
- Excess nitrogen
- Excess water (rain and/or irrigation)
- Combination of the 3
- Fruiting gaps/loss

Considerations for PGR Use

- Bigger plants require higher rates for same effect diluted by plant growth
- Not permanent hormonal effect diluted over time and with good growing conditions; sequential applications common
- Can only impact future growth; applications should be based off growth potential not current plant height; slight impact on accelerating cutout
- "Pix effect" darker green plants post application
 - Inhibits cell expansion in stems AND leaves = thicker leaves = thicker layer of green cells = darker green

- Two varieties DP 1646 B2XF & FM 1830 GLT
- Drip irrigation (30" rows, tape every other row middle).
 - 16" rain + ~6" of irrigation
- Four PGR (mepiquat chloride) application schedules:
 - 1. nontreated
 - 2. 4 oz @ pinhead, EB, EB + 2 wk; 8 oz @ EB + 4 wk (20 oz total)
 - 3. 12 oz @ EB and EB + 4 wk (24 oz total)
 - 4. 24 oz @ EB + 4 wk (24 oz total)

Plant Height (in)	8-leaf	EB	EB + 2 wk.	EB + 4 wk.	EB + 6 wk.
<u>Variety</u>					
DP 1646 B2XF	15.6 a	20.0 a	27.4 a	31.5 a	34.3 a
FM 1830 GLT	14.1 b	17.0 b	22.1 b	27.1 b	28.3 b
Range	1.5	3	5.3	4.4	6
PGR Treatment					
None	14.6	19.1 a	26.0 a	31.0 a	33.5 a
1 (4, 4, 4, 8)	14.9	17.5 b	24.2 b	27.9 b	28.0 b
2 (0, 12, 0, 12)	14.7	18.8 a	23.9 b	27.7 b	30.4 b
3 (0, 0, 0, 24)	15.1	18.6 a	24.9 ab	30.7 ab	33.4 a
Range	0.5	1.6	2.1	3.3	5.5

Maturity	Height	NUCB	Total Nodes	% Open
<u>Variety</u>				
DP 1646 B2XF	34.1 a	11.4 b	22.5 a	42.1 b
FM 1830 GLT	26.3 b	12.6 a	20.7 b	62.3 a
Range	7.8	1.2	1.8	20.2
PGR Treatment				
None	33.2 a	11.7	22.6 a	47.3
1 (4, 4, 4, 8)	27.5 b	12.1	20.6 b	53.5
2 (0, 12, 0, 12)	27.8 b	12.3	21.0 b	54.5
3 (0, 0, 0, 24)	32.4 a	11.9	22.1 a	53.4
Range	5.7	0.6	2	7.2

Panhandle Plant Growth Regulator Demo

- Treatments: Applications of generic mepiquat chloride applied at early squaring (SQ, pinhead – matchhead square), early bloom (EB), and mid bloom (MB).
 - Treatment 1 Non-treated check (NTC) (0 total ounces)
 - Treatment 2 4 oz @ SQ, 8 oz @ EB, and 16 oz @ MB (28 total ounces)
 - Treatment 3 8 oz @ SQ, 16 oz @ EB, and 24 oz @ MB (48 total ounces)
 - Treatment 4 0 oz @ SQ, 16 oz @ EB, and 16 oz @ MB (32 total ounces)
- In-season measurements taken 9/4/2019, approximately 2 weeks after MB application.

Variety	Height (in)	Total Nodes	H:N	NAWF
PHY 210 W3FE	23.3 c	17.9 ab	1.31 c	2.71
PHY 250 W3FE	23.8 c	17.6 b	1.37 c	2.76
PHY 320 W3FE	27.5 a	18.5 a	1.50 ab	2.94
PHY 350 W3FE	27.8 a	18.4 a	1.52 a	2.78
PHY 400 W3FE	25.7 b	18.0 ab	1.43 b	2.94
PX2C14	26.4 b	18.4 a	1.44 b	2.94
Range	4.5	0.9	0.21	0.23
Treatment	Height (in)	Total Nodes	H:N	NAWF
1 (NTC)	25.8 b	18.0	1.44 ab	2.88
2 (4, 8, 16)	25.3 b	18.1	1.40 b	2.83
3 (8, 16, 24)	25.3 b	18.0	1.41 b	2.81
4 (0, 16, 16)	26.7 a	18.4	1.46 a	2.86
Range	1.4	0.4	0.06	0.07

Maturity	Height	NUCB	Total Nodes	% Open
<u>Variety</u>				
DP 1646 B2XF	34.1 a	11.4 b	22.5 a	42.1 b
FM 1830 GLT	26.3 b	12.6 a	20.7 b	62.3 a
Range	7.8	1.2	1.8	20.2
PGR Treatment				
None	33.2 a	11.7	22.6 a	47.3
1 (4, 4, 4, 8)	27.5 b	12.1	20.6 b	53.5
2 (0, 12, 0, 12)	27.8 b	12.3	21.0 b	54.5
3 (0, 0, 0, 24)	32.4 a	11.9	22.1 a	53.4
Range	5.7	0.6	2	7.2

Other Factors that Regulate Growth

- Variety selection range of maturity classes in cotton will also differ in growth habits/potential
- Fruit retention cotton is indeterminate but supplying developing flower buds and fruit is priority
- Proper management of nutrients and water avoid stress and excesses when possible
- All of these are more effective (and cheaper) than applying PGRs. PGR products are very good at inhibiting growth in periods of extremes or excess; maturity managed through variety selection and timeliness of inputs

Thank You

Email: <u>seth.byrd@okstate.edu</u> Twitter: <u>@OKStateCotton</u>