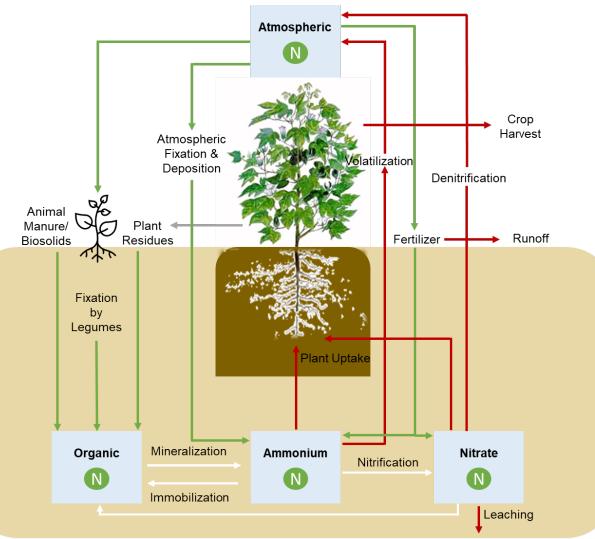
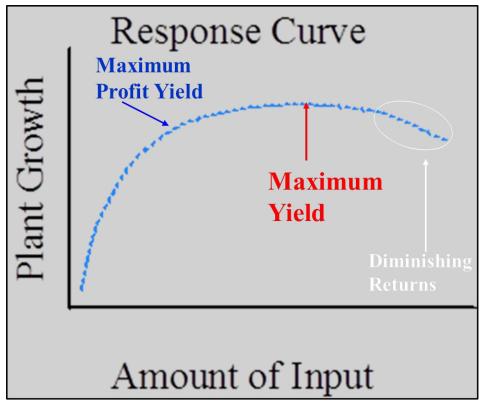

Prioritizing Nutrient Inputs to Maximize Use Efficiency


2nd Annual Great Plains Cotton Conference

February 23, 2021



Efficient Nutrient Management

Environment

Economics

Urea: \$453/ton UAN32: \$285/ton UAN28: \$243/ton Anhydrous: \$524/ton 10-34-0: \$512/ton MAP: \$642/ton DAP: \$588/ton 60-0-0:\$398/ton

Efficient Nutrient Management

4R Principles of Nutrient Stewardship

RIGHT SOURCE

FERTILIZER

Matches fertilizer type to crop needs.

RIGHT RATE

Matches amount of fertilizer to crop needs.

RIGHT TIME

Makes nutrients available when crops need them.

RIGHT PLACE

Keeps nutrients where crops can use them.

Increased Cotton Productivity

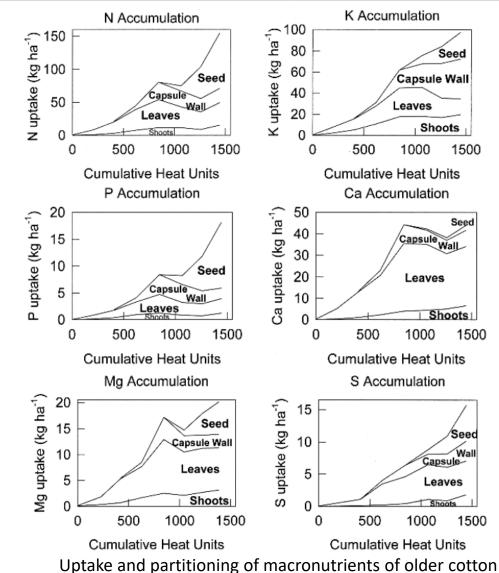
Genetics × Environment × Management

1990

Selective breeding for increased number of fibers per ovule, increased number of seeds per boll, increased number of bolls per plant, increased boll weight

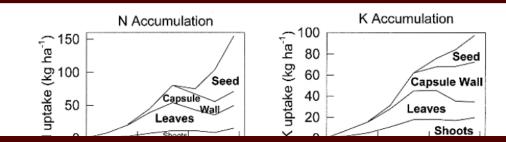
Increased resistance to biotic/abiotic stresses

Optimized plant architecture (compact, foliage angle)


Adaptability to wide range of of environmental conditions

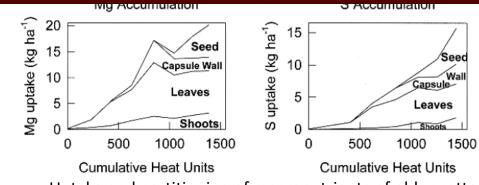
Adoption of new technology/management strategies

Change in the patterns of dry matter and nutrient allocation


Early Research on Cotton Nutrient Allocation

Year	Authors	Lint yield (lb/acre)			
1919	Fraps	55-385			
1926	McHargue	300			
1942	Olson and Bledsoe	163-660			
1970	Bassett et al.	1051-1452			
1990 1992 1993	Mullins and Burmester	749			
2020	Pabuayon, Lewis, and Ritchie	865-1525			

cultivars (Mullins and Burmester, 1990, 1992, 1993)


Early Research on Cotton Nutrient Allocation

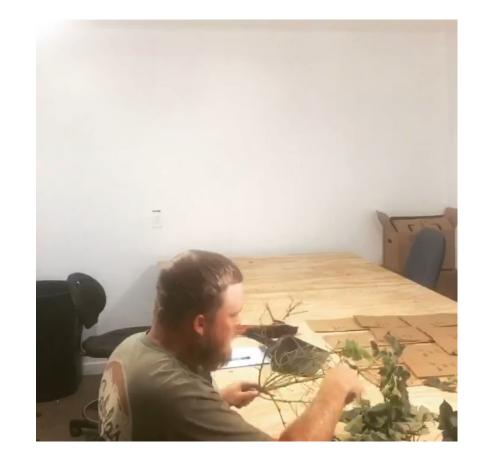
Dry matter and nutrient partitioning, uptake, and removal have significantly changed from previous reports (Mullins and Burmester, 1990) due in part to physiological changes which has increased yields of modern cotton cultivars.

l int vield

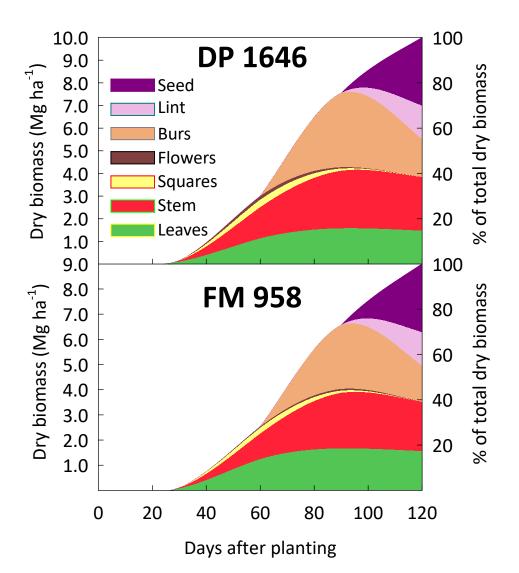
1992 1993	Burmester	749	
2020	Pabuayon, Lewis, and Ritchie	865-1525	

Uptake and partitioning of macronutrients of older cotton cultivars (Mullins and Burmester, 1990, 1992, 1993)

Study Details


- 2018-2020 at New Deal, TX (Chillicothe, Brownfield, and San Angelo)
- Cultivars: PM HS26, FM 958, and DP 1646 B2XF
- Fertilizers:

100 lb N/acre (40% pre-plant, 60% at 50 DAP) **80 lb P₂O₅ /acre**; **27 lb K₂O /acre** (pre-plant)

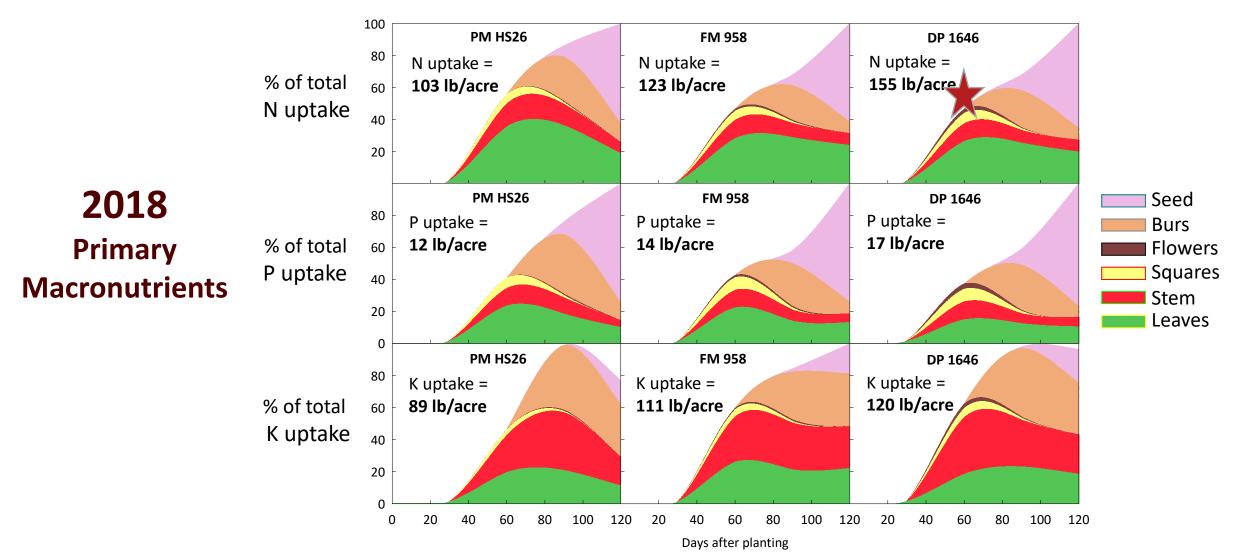

- Irrigation: 12 inches (subsurface drip irrigation)
- Measurements:

Yield and biomass production

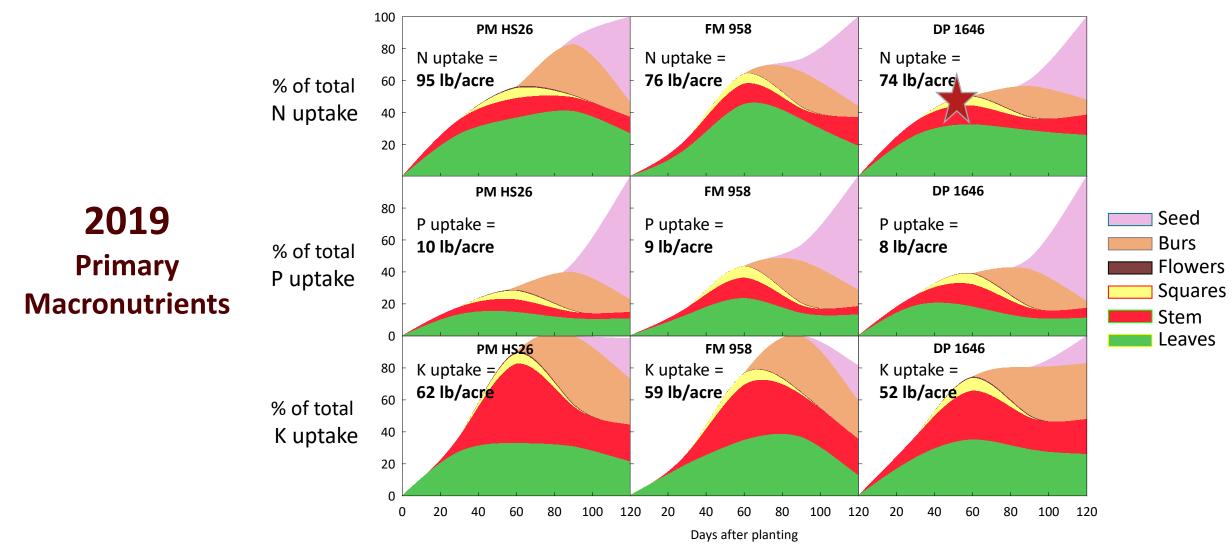
Uptake and partitioning of macro and micronutrients to different plant organs

Bigger resource pool and greater efficiency in partitioning of dry matter towards fruit development

Efficient resource partitioning was reflected in greater lint yield of FM 958 and DP 1646 than older cultivars


Lint yield (lb/acre)						
Previous report	Current report					
1990		2018	2019	2020		
749	PM HS26	1300 b	676 b	791 b		
	FM 958	1556 a	699 ab	975 a		
	DP 1646	1525 a	865 a	956 ab		

Newer cultivars have better efficiency in using and remobilizing macronutrients to produce more lint yield


	% increase (from the 1990s report to current report)				
Nutrient	Total uptake	Lint yield/unit of nutrient taken up			
N	36%	66%			
Р	12%	88%			
К	26%	64%			
S	48%	30%			
Са	44%	44%			
Mg	47%	40%			

Note: current report based on the performance of DP 1646 under favorable growing environment

Fruit of modern cultivars are more nutrient-dense than previously reported

Fruit of modern cultivars are more nutrient-dense than previously reported

Higher uptake of Zn and Cu and lower uptake of Fe and Mn in newer cultivars compared to older cultivars

Micronutrient	1993 (Mullins-Burmester report)		2018 (current report)		2019 (current report)				
	Uptake	Removal	Uptake Index	Uptake	Removal	Uptake Index	Uptake	Removal	Uptake Index
	—— lb/	acre — —	lb per 480 lb lint	lb per —— lb/acre —— 480 lb lin		lb per 480 lb lint	—— Ib/acre ——		lb per 480 lb lint
Zn	0.092	0.044	0.072	0.119	0.088	0.053	0.105	0.079	0.086
Cu	0.025	0.004	0.019	0.042	0.022	0.019	0.025	0.012	0.019
Fe	0.559	0.079	0.432	0.252	0.046	0.110	0.161	0.036	0.139
Mn	0.346	0.023	0.072	0.140	0.028	0.062	0.110	0.016	0.096
В				0.278	0.037	0.125	0.155	0.021	0.134
Na				2.205	1.221	0.970	1.004	0.181	0.888

Conclusions

- 1. Macronutrient uptake has increased along with yield
- Improvement in nutrient uptake efficiency after
 30 years of cotton production (<u>40 lb N/acre/bale</u>)
- 3. Greater removal rates (seed) of modern cultivars
- 4. Updated information can be used for optimizing nutrient application more site years coming.
- 5. Nutrient recommendation adjustments to the shift in cultivar growth characteristics with future rate and timing studies

Published article:

Pabuayon, I. L. B., Lewis, K. L., & Ritchie, G. L. (2020). Dry matter and nutrient partitioning changes for the past 30 years of cotton production. *Agronomy Journal*. 112 (5): 4373-4385

TEXAS A&M GRILIFE RESEARCH

TEXAS TECH UNIVERSITY Department of Plant and Soil Science

Katie L. Lewis, PhD Assistant Professor Soil Chemistry & Fertility

Texas A&M AgriLife Research 1102 E. FM 1294, Lubbock

> 361-815-3836 katie.lewis@ag.tamu.edu

Funding Support Texas State Support Committee Cotton Research and Promotion Program